Classification using an adaptive fuzzy network

N. Pizzi, A. Demko, W. Pedrycz
{"title":"Classification using an adaptive fuzzy network","authors":"N. Pizzi, A. Demko, W. Pedrycz","doi":"10.1109/NAFIPS.2010.5548179","DOIUrl":null,"url":null,"abstract":"The analysis of feature variance is a common approach used for data interpretation. In the case of pattern classification, however, the transformation of correlated features into a new set of uncorrelated variables must be used with caution, as there is no necessary causal connection between discriminatory power and variance. To compensate for this potential shortcoming, we present a classification method that blends variance analysis with an adaptive fuzzy logic network that identifies the most discriminatory set of uncorrelated variables. We empirically evaluate the effectiveness of this method using a suite of biomedical datasets and comparing its performance against two benchmark classifiers.","PeriodicalId":394892,"journal":{"name":"2010 Annual Meeting of the North American Fuzzy Information Processing Society","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 Annual Meeting of the North American Fuzzy Information Processing Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NAFIPS.2010.5548179","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

The analysis of feature variance is a common approach used for data interpretation. In the case of pattern classification, however, the transformation of correlated features into a new set of uncorrelated variables must be used with caution, as there is no necessary causal connection between discriminatory power and variance. To compensate for this potential shortcoming, we present a classification method that blends variance analysis with an adaptive fuzzy logic network that identifies the most discriminatory set of uncorrelated variables. We empirically evaluate the effectiveness of this method using a suite of biomedical datasets and comparing its performance against two benchmark classifiers.
采用自适应模糊网络进行分类
特征方差分析是数据解释的常用方法。然而,在模式分类的情况下,将相关特征转换成一组新的不相关变量必须谨慎使用,因为区分力和方差之间没有必然的因果关系。为了弥补这一潜在的缺点,我们提出了一种将方差分析与自适应模糊逻辑网络混合的分类方法,该方法可以识别最具歧视性的一组不相关变量。我们使用一组生物医学数据集对该方法的有效性进行了实证评估,并将其性能与两个基准分类器进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信