Efficient Generation of Poisson-Disk Sampling Patterns

T. Jones
{"title":"Efficient Generation of Poisson-Disk Sampling Patterns","authors":"T. Jones","doi":"10.1080/2151237X.2006.10129217","DOIUrl":null,"url":null,"abstract":"Poisson-disk sampling patterns are of interest to the graphics community because their blue-noise properties are desirable in sampling patterns for rendering, illumination, and other computations. Until now, such patterns could only be generated by slow methods with poor convergence, or could only be approximated by jittering individual samples or tiling sets of samples. We present a simple and efficient randomized algorithm for generating true Poissondisk sampling patterns in a square domain, given a minimum radius R between samples. The algorithm runs in O(N log N) time for a pattern of N points. The method is based on the Voronoi diagram. Source code is available online.","PeriodicalId":318334,"journal":{"name":"Journal of Graphics Tools","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"98","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Graphics Tools","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/2151237X.2006.10129217","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 98

Abstract

Poisson-disk sampling patterns are of interest to the graphics community because their blue-noise properties are desirable in sampling patterns for rendering, illumination, and other computations. Until now, such patterns could only be generated by slow methods with poor convergence, or could only be approximated by jittering individual samples or tiling sets of samples. We present a simple and efficient randomized algorithm for generating true Poissondisk sampling patterns in a square domain, given a minimum radius R between samples. The algorithm runs in O(N log N) time for a pattern of N points. The method is based on the Voronoi diagram. Source code is available online.
泊松盘采样模式的高效生成
泊松盘采样模式是图形界感兴趣的,因为它们的蓝噪声特性在渲染、照明和其他计算的采样模式中是理想的。到目前为止,这种模式只能通过缓慢且收敛性差的方法生成,或者只能通过抖动单个样本或平铺样本集来近似。在给定样本间最小半径R的条件下,我们提出了一种简单有效的随机化算法,用于在平方域中生成真正的泊松盘采样模式。对于N个点的模式,算法运行时间为O(N log N)。该方法基于Voronoi图。源代码可在线获得。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信