The use of fuzzy neural networks for feature/sensor selection

M. E. Ulug
{"title":"The use of fuzzy neural networks for feature/sensor selection","authors":"M. E. Ulug","doi":"10.1109/MFI.1994.398398","DOIUrl":null,"url":null,"abstract":"In diagnostic and fuzzy pattern recognition applications it is very difficult to find out which features to use to achieve the optimum performance. This paper describes a PC-based feature selection system that solves this problem. The system uses a real-time fuzzy neural network. By using the numerical data about the membership functions and by testing thousands of feature subset combinations, the system searches for a subset that increases the separation between classes. If such a subset exists, its use makes it easier to identify the classes. The use of fewer features also results in smaller array sizes and a faster operation. The results of applying this technique to two different systems are discussed.<<ETX>>","PeriodicalId":133630,"journal":{"name":"Proceedings of 1994 IEEE International Conference on MFI '94. Multisensor Fusion and Integration for Intelligent Systems","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1994-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of 1994 IEEE International Conference on MFI '94. Multisensor Fusion and Integration for Intelligent Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MFI.1994.398398","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

In diagnostic and fuzzy pattern recognition applications it is very difficult to find out which features to use to achieve the optimum performance. This paper describes a PC-based feature selection system that solves this problem. The system uses a real-time fuzzy neural network. By using the numerical data about the membership functions and by testing thousands of feature subset combinations, the system searches for a subset that increases the separation between classes. If such a subset exists, its use makes it easier to identify the classes. The use of fewer features also results in smaller array sizes and a faster operation. The results of applying this technique to two different systems are discussed.<>
使用模糊神经网络进行特征/传感器选择
在诊断和模糊模式识别应用中,很难找到使用哪些特征来达到最佳性能。本文介绍了一种基于pc机的特征选择系统,解决了这一问题。该系统采用实时模糊神经网络。通过使用关于隶属函数的数值数据和测试数千个特征子集组合,系统搜索一个增加类之间分离的子集。如果存在这样的子集,则使用它可以更容易地识别类。使用更少的特性还会导致更小的数组大小和更快的操作。讨论了将该技术应用于两种不同系统的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信