Person re-identification using multiple features fusion

Kang Han, W. Wan, Guoliang Chen, Li Hou
{"title":"Person re-identification using multiple features fusion","authors":"Kang Han, W. Wan, Guoliang Chen, Li Hou","doi":"10.1109/ICALIP.2016.7846660","DOIUrl":null,"url":null,"abstract":"In this paper, we propose combined visual features for person re-identification. Our features are based on the multiple hand-crafted visual features. The proposed features are a combination of histogram from the RGB, YUV and HSV color channels, LBP and SIFT features. Then we use different distance metric learning methods to measure the similarity of the same persons and different persons. Experimental results demonstrate that the combined features have discriminative power for person re-identification.","PeriodicalId":184170,"journal":{"name":"2016 International Conference on Audio, Language and Image Processing (ICALIP)","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 International Conference on Audio, Language and Image Processing (ICALIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICALIP.2016.7846660","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In this paper, we propose combined visual features for person re-identification. Our features are based on the multiple hand-crafted visual features. The proposed features are a combination of histogram from the RGB, YUV and HSV color channels, LBP and SIFT features. Then we use different distance metric learning methods to measure the similarity of the same persons and different persons. Experimental results demonstrate that the combined features have discriminative power for person re-identification.
基于多特征融合的人物再识别
本文提出了一种结合视觉特征的人物再识别方法。我们的特征是基于多个手工制作的视觉特征。所提出的特征是来自RGB、YUV和HSV颜色通道的直方图、LBP和SIFT特征的组合。然后我们使用不同的距离度量学习方法来度量同一人和不同人的相似度。实验结果表明,该组合特征对人的再识别具有较强的判别能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信