Stability and bifurcation analysis of the predator-prey model with Michaelis-Menten type harvesting and immigration

M. Priyanka, P. Muthukumar
{"title":"Stability and bifurcation analysis of the predator-prey model with Michaelis-Menten type harvesting and immigration","authors":"M. Priyanka, P. Muthukumar","doi":"10.1109/ICC56513.2022.10093658","DOIUrl":null,"url":null,"abstract":"This paper is interested in studying the asymptotic stability and bifurcation analysis for the suggested predator-prey model. Using the Routh-Hurwitz stability criterion and a suitable Lyapunov function, we derived necessary and sufficient conditions for the local and global stability of the proposed model's possible equilibrium points. Next, codimension-1 bifurcations such as saddle-node bifurcation and Hopf-bifurcating limit cycles are examined by utilizing Sotomayor's theorem and the Lyapunov number. Finally, numerical examples are solved to confirm the theoretical results.","PeriodicalId":101654,"journal":{"name":"2022 Eighth Indian Control Conference (ICC)","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 Eighth Indian Control Conference (ICC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICC56513.2022.10093658","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper is interested in studying the asymptotic stability and bifurcation analysis for the suggested predator-prey model. Using the Routh-Hurwitz stability criterion and a suitable Lyapunov function, we derived necessary and sufficient conditions for the local and global stability of the proposed model's possible equilibrium points. Next, codimension-1 bifurcations such as saddle-node bifurcation and Hopf-bifurcating limit cycles are examined by utilizing Sotomayor's theorem and the Lyapunov number. Finally, numerical examples are solved to confirm the theoretical results.
Michaelis-Menten型捕食-食饵模型的稳定性和分岔分析
本文主要研究了该模型的渐近稳定性和分岔分析。利用Routh-Hurwitz稳定性判据和合适的Lyapunov函数,给出了模型可能平衡点局部稳定和全局稳定的充分必要条件。其次,利用索托马约尔定理和李雅普诺夫数对鞍节点分岔和hopf分岔极限环等余维1分岔进行了研究。最后通过数值算例对理论结果进行了验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信