Accelerated Nearest Neighbor Search with Quick ADC

Fabien André, Anne-Marie Kermarrec, Nicolas Le Scouarnec
{"title":"Accelerated Nearest Neighbor Search with Quick ADC","authors":"Fabien André, Anne-Marie Kermarrec, Nicolas Le Scouarnec","doi":"10.1145/3078971.3078992","DOIUrl":null,"url":null,"abstract":"Efficient Nearest Neighbor (NN) search in high-dimensional spaces is a foundation of many multimedia retrieval systems. Because it offers low responses times, Product Quantization (PQ) is a popular solution. PQ compresses high-dimensional vectors into short codes using several sub-quantizers, which enables in-RAM storage of large databases. This allows fast answers to NN queries, without accessing the SSD or HDD. The key feature of PQ is that it can compute distances between short codes and high-dimensional vectors using cache-resident lookup tables. The efficiency of this technique, named Asymmetric Distance Computation (ADC), remains limited because it performs many cache accesses. In this paper, we introduce Quick ADC, a novel technique that achieves a 3 to 6 times speedup over ADC by exploiting Single Instruction Multiple Data (SIMD) units available in current CPUs. Efficiently exploiting SIMD requires algorithmic changes to the ADC procedure. Namely, Quick ADC relies on two key modifications of ADC: (i) the use 4-bit sub-quantizers instead of the standard 8-bit sub-quantizers and (ii) the quantization of floating-point distances. This allows Quick ADC to exceed the performance of state-of-the-art systems, e.g., it achieves a Recall@100 of 0.94 in 3.4 ms on 1 billion SIFT descriptors (128-bit codes).","PeriodicalId":403556,"journal":{"name":"Proceedings of the 2017 ACM on International Conference on Multimedia Retrieval","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2017 ACM on International Conference on Multimedia Retrieval","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3078971.3078992","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

Abstract

Efficient Nearest Neighbor (NN) search in high-dimensional spaces is a foundation of many multimedia retrieval systems. Because it offers low responses times, Product Quantization (PQ) is a popular solution. PQ compresses high-dimensional vectors into short codes using several sub-quantizers, which enables in-RAM storage of large databases. This allows fast answers to NN queries, without accessing the SSD or HDD. The key feature of PQ is that it can compute distances between short codes and high-dimensional vectors using cache-resident lookup tables. The efficiency of this technique, named Asymmetric Distance Computation (ADC), remains limited because it performs many cache accesses. In this paper, we introduce Quick ADC, a novel technique that achieves a 3 to 6 times speedup over ADC by exploiting Single Instruction Multiple Data (SIMD) units available in current CPUs. Efficiently exploiting SIMD requires algorithmic changes to the ADC procedure. Namely, Quick ADC relies on two key modifications of ADC: (i) the use 4-bit sub-quantizers instead of the standard 8-bit sub-quantizers and (ii) the quantization of floating-point distances. This allows Quick ADC to exceed the performance of state-of-the-art systems, e.g., it achieves a Recall@100 of 0.94 in 3.4 ms on 1 billion SIFT descriptors (128-bit codes).
快速ADC加速最近邻搜索
高维空间中高效的最近邻搜索是许多多媒体检索系统的基础。由于产品量化(PQ)的响应时间短,因此它是一种流行的解决方案。PQ使用几个子量化器将高维向量压缩成短代码,从而实现大型数据库的内存存储。这允许快速回答NN查询,而无需访问SSD或HDD。PQ的关键特征是它可以使用驻留在缓存中的查找表计算短代码和高维向量之间的距离。这种称为非对称距离计算(ADC)的技术的效率仍然有限,因为它执行许多缓存访问。在本文中,我们介绍了快速ADC,这是一种利用当前cpu中可用的单指令多数据(SIMD)单元实现比ADC快3到6倍的新技术。有效地利用SIMD需要对ADC过程进行算法更改。也就是说,快速ADC依赖于ADC的两个关键修改:(i)使用4位子量化器而不是标准的8位子量化器;(ii)浮点距离的量化。这使得Quick ADC的性能超过了最先进的系统,例如,在10亿个SIFT描述符(128位代码)上,它在3.4 ms内实现了Recall@100的0.94。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信