Predicting Output Performance of a Petascale Supercomputer

Bing Xie, Yezhou Huang, J. Chase, J. Choi, S. Klasky, J. Lofstead, S. Oral
{"title":"Predicting Output Performance of a Petascale Supercomputer","authors":"Bing Xie, Yezhou Huang, J. Chase, J. Choi, S. Klasky, J. Lofstead, S. Oral","doi":"10.1145/3078597.3078614","DOIUrl":null,"url":null,"abstract":"In this paper, we develop a predictive model useful for output performance prediction of supercomputer file systems under production load. Our target environment is Titan---the 3rd fastest supercomputer in the world---and its Lustre-based multi-stage write path. We observe from Titan that although output performance is highly variable at small time scales, the mean performance is stable and consistent over typical application run times. Moreover, we find that output performance is non-linearly related to its correlated parameters due to interference and saturation on individual stages on the path. These observations enable us to build a predictive model of expected write times of output patterns and I/O configurations, using feature transformations to capture non-linear relationships. We identify the candidate features based on the structure of the Lustre/Titan write path, and use feature transformation functions to produce a model space with 135,000 candidate models. By searching for the minimal mean square error in this space we identify a good model and show that it is effective.","PeriodicalId":436194,"journal":{"name":"Proceedings of the 26th International Symposium on High-Performance Parallel and Distributed Computing","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"50","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 26th International Symposium on High-Performance Parallel and Distributed Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3078597.3078614","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 50

Abstract

In this paper, we develop a predictive model useful for output performance prediction of supercomputer file systems under production load. Our target environment is Titan---the 3rd fastest supercomputer in the world---and its Lustre-based multi-stage write path. We observe from Titan that although output performance is highly variable at small time scales, the mean performance is stable and consistent over typical application run times. Moreover, we find that output performance is non-linearly related to its correlated parameters due to interference and saturation on individual stages on the path. These observations enable us to build a predictive model of expected write times of output patterns and I/O configurations, using feature transformations to capture non-linear relationships. We identify the candidate features based on the structure of the Lustre/Titan write path, and use feature transformation functions to produce a model space with 135,000 candidate models. By searching for the minimal mean square error in this space we identify a good model and show that it is effective.
预测千兆级超级计算机的输出性能
本文建立了一个预测模型,用于超级计算机文件系统在生产负载下的输出性能预测。我们的目标环境是Titan——世界上第三快的超级计算机——以及它基于luster的多级写入路径。我们从Titan观察到,尽管输出性能在小时间尺度上变化很大,但在典型的应用程序运行时间内,平均性能是稳定和一致的。此外,我们发现由于路径上各个阶段的干扰和饱和,输出性能与其相关参数呈非线性关系。这些观察结果使我们能够构建输出模式和I/O配置的预期写入时间的预测模型,使用特征转换来捕获非线性关系。我们基于Lustre/Titan写入路径的结构识别候选特征,并使用特征转换函数生成包含135,000个候选模型的模型空间。通过在这个空间中寻找最小均方误差,我们找到了一个好的模型,并证明了它是有效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信