Variation Approach to Signal Synthesis with Minimal Energy Outside the Operating Frequency Band

I. Lesovoy, I. Makarov
{"title":"Variation Approach to Signal Synthesis with Minimal Energy Outside the Operating Frequency Band","authors":"I. Lesovoy, I. Makarov","doi":"10.1109/TCSET49122.2020.235577","DOIUrl":null,"url":null,"abstract":"Is shown that the synthesis of a signal of the optimal shape is an extreme task, the variation nature of which allows us to apply ideas and methods of functional analysis to solve it. To study functional extreme properties, calculus of variations is applied. The obtained expression describes the shape of an elementary signal of finite duration with minimum energy outside the working frequency band.","PeriodicalId":389689,"journal":{"name":"2020 IEEE 15th International Conference on Advanced Trends in Radioelectronics, Telecommunications and Computer Engineering (TCSET)","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 15th International Conference on Advanced Trends in Radioelectronics, Telecommunications and Computer Engineering (TCSET)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TCSET49122.2020.235577","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Is shown that the synthesis of a signal of the optimal shape is an extreme task, the variation nature of which allows us to apply ideas and methods of functional analysis to solve it. To study functional extreme properties, calculus of variations is applied. The obtained expression describes the shape of an elementary signal of finite duration with minimum energy outside the working frequency band.
工作频带外能量最小的信号合成变分法
结果表明,信号的最优形状的合成是一个极端的任务,它的变化性质允许我们应用泛函分析的思想和方法来解决它。为了研究泛函的极值性质,应用变分法。所得到的表达式描述了在工作频带外能量最小的有限持续时间的初等信号的形状。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信