Vikas Kumar, Saeideh Bakhshi, L. Kennedy, David A. Shamma
{"title":"Adaptive City Characteristics: How Location Familiarity Changes What Is Regionally Descriptive","authors":"Vikas Kumar, Saeideh Bakhshi, L. Kennedy, David A. Shamma","doi":"10.1145/3079628.3079665","DOIUrl":null,"url":null,"abstract":"Proliferation of GPS-enabled mobile devices has brought a plurality of location-aware applications leveraging the location characteristics in the shared content, like photos and check-ins. While these applications provide contextual and relevant information, they also assume geo-tagged contents to be representative of the geo-bounded characteristics of location. In this paper, however, we show that the characteristics geo-tagged contents capture about a location can vary based on the familiarity of user (sharing the content) with the location. Using a large dataset of geo-tagged photos, we learn descriptive spatial photo characteristics and user temporal-location-familiarity to highlight unique characteristics photos capture of location, which vary significantly if taken by locals versus tourists. We then propose a ranking-approach to find most representative photos for a given city. A user-based evaluation shows photos are more diverse and characteristic of location compared to other popular baselines while being representative of how locals and tourists would describe the city.","PeriodicalId":216017,"journal":{"name":"Proceedings of the 25th Conference on User Modeling, Adaptation and Personalization","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 25th Conference on User Modeling, Adaptation and Personalization","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3079628.3079665","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Proliferation of GPS-enabled mobile devices has brought a plurality of location-aware applications leveraging the location characteristics in the shared content, like photos and check-ins. While these applications provide contextual and relevant information, they also assume geo-tagged contents to be representative of the geo-bounded characteristics of location. In this paper, however, we show that the characteristics geo-tagged contents capture about a location can vary based on the familiarity of user (sharing the content) with the location. Using a large dataset of geo-tagged photos, we learn descriptive spatial photo characteristics and user temporal-location-familiarity to highlight unique characteristics photos capture of location, which vary significantly if taken by locals versus tourists. We then propose a ranking-approach to find most representative photos for a given city. A user-based evaluation shows photos are more diverse and characteristic of location compared to other popular baselines while being representative of how locals and tourists would describe the city.