Tight Just Chromatic Excellence In Fuzzy Graphs

K. Suriya
{"title":"Tight Just Chromatic Excellence In Fuzzy Graphs","authors":"K. Suriya","doi":"10.15520/ajcem.2017.vol6.iss3.78.pp31-34","DOIUrl":null,"url":null,"abstract":"Let G be a simple fuzzy graph. A family   I“a¶  = { I³1, I³2,…, I³k}  of  fuzzy sets on a set V  is called k-fuzzy colouring of  V = (V,Iƒ,µ)  if  i) âˆa I“a¶  = Iƒ,  ii) I³i∩ I³j = Ф, iii) for every strong edge (x,y) (i.e., µ(xy) > 0) of  G  min{I³i(x), I³j(y)} = 0; (1 ≤ i ≤ k). The minimum number of  k for which there exists a k-fuzzy colouring is called the fuzzy chromatic number of G denoted as I‡f (G). Then I“a¶   is the partition of independent sets of vertices of  G  in which each sets has the same colour is called the fuzzy chromatic partition. A graph G is called the just I‡f -excellent if every vertex of G appears as a singleton in exactly one _f -partition of G. A just I‡f –excellent graph of order n is called the tight just I‡f -excellent if G having exactly n, I‡f -partitions. This paper aims at the study of the new concept namely tight just Chromatic excellence in fuzzy graphs and its properties. 02000 Mathematics Subject Classification:05C72 Key words: fuzzy just chromatic excellent, tight just I‡f -excellent, fuzzy colourful vertex, fuzzy kneser graph.","PeriodicalId":173381,"journal":{"name":"Asian Journal of Current Engineering and Maths","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asian Journal of Current Engineering and Maths","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15520/ajcem.2017.vol6.iss3.78.pp31-34","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Let G be a simple fuzzy graph. A family   I“a¶  = { I³1, I³2,…, I³k}  of  fuzzy sets on a set V  is called k-fuzzy colouring of  V = (V,Iƒ,µ)  if  i) âˆa I“a¶  = Iƒ,  ii) I³i∩ I³j = Ф, iii) for every strong edge (x,y) (i.e., µ(xy) > 0) of  G  min{I³i(x), I³j(y)} = 0; (1 ≤ i ≤ k). The minimum number of  k for which there exists a k-fuzzy colouring is called the fuzzy chromatic number of G denoted as I‡f (G). Then I“a¶   is the partition of independent sets of vertices of  G  in which each sets has the same colour is called the fuzzy chromatic partition. A graph G is called the just I‡f -excellent if every vertex of G appears as a singleton in exactly one _f -partition of G. A just I‡f –excellent graph of order n is called the tight just I‡f -excellent if G having exactly n, I‡f -partitions. This paper aims at the study of the new concept namely tight just Chromatic excellence in fuzzy graphs and its properties. 02000 Mathematics Subject Classification:05C72 Key words: fuzzy just chromatic excellent, tight just I‡f -excellent, fuzzy colourful vertex, fuzzy kneser graph.
模糊图的紧密全色卓越
设G是一个简单模糊图。familyA我”¶={我³³1,2,一个€¦,我³k}弗吉尼亚州一套模糊集在一个叫做k-fuzzy色彩耀目V = (V,我ƒµ)ifA我)一个ˆ”¶=我ƒ2)我³iaˆ©³j =Ф(iii)为每一个强大的优势(x, y)(例如,µ(xy) > 0)耀目GA分钟{我³(x)³j (y)} = 0;(1 ‰·i ‰·k).存在k-模糊着色的最小数of k称为G的模糊着色数,记为i‡f (G)。然后i´a¶Â是每个集具有相同颜色的独立顶点集of GÂ的划分称为模糊着色划分。如果G的每个顶点在G的一个_f -分区中都是单点,则图G称为恰好I‡f -优图;如果G恰好有n个I‡f -分区,则n阶恰好I‡f -优图称为紧恰好I‡f -优图。本文旨在研究模糊图中的紧正色优的新概念及其性质。关键词:模糊just chromatic excellent, tight just I‡f -excellent,模糊彩色顶点,模糊kneser图。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信