K. Suriya
{"title":"Tight Just Chromatic Excellence In Fuzzy Graphs","authors":"K. Suriya","doi":"10.15520/ajcem.2017.vol6.iss3.78.pp31-34","DOIUrl":null,"url":null,"abstract":"Let G be a simple fuzzy graph. A family  I“a¶ = { I³1, I³2,…, I³k} of fuzzy sets on a set V is called k-fuzzy colouring of V = (V,Iƒ,µ) if i) âˆa I“a¶ = Iƒ, ii) I³i∩ I³j = Ф, iii) for every strong edge (x,y) (i.e., µ(xy) > 0) of G min{I³i(x), I³j(y)} = 0; (1 ≤ i ≤ k). The minimum number of k for which there exists a k-fuzzy colouring is called the fuzzy chromatic number of G denoted as I‡f (G). Then I“a¶  is the partition of independent sets of vertices of G in which each sets has the same colour is called the fuzzy chromatic partition. A graph G is called the just I‡f -excellent if every vertex of G appears as a singleton in exactly one _f -partition of G. A just I‡f –excellent graph of order n is called the tight just I‡f -excellent if G having exactly n, I‡f -partitions. This paper aims at the study of the new concept namely tight just Chromatic excellence in fuzzy graphs and its properties. 02000 Mathematics Subject Classification:05C72 Key words: fuzzy just chromatic excellent, tight just I‡f -excellent, fuzzy colourful vertex, fuzzy kneser graph.","PeriodicalId":173381,"journal":{"name":"Asian Journal of Current Engineering and Maths","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asian Journal of Current Engineering and Maths","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15520/ajcem.2017.vol6.iss3.78.pp31-34","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
模糊图的紧密全色卓越
设G是一个简单模糊图。familyA我”¶={我³³1,2,一个€¦,我³k}弗吉尼亚州一套模糊集在一个叫做k-fuzzy色彩耀目V = (V,我ƒµ)ifA我)一个ˆ”¶=我ƒ2)我³iaˆ©³j =Ф(iii)为每一个强大的优势(x, y)(例如,µ(xy) > 0)耀目GA分钟{我³(x)³j (y)} = 0;(1 ‰·i ‰·k).存在k-模糊着色的最小数of k称为G的模糊着色数,记为i‡f (G)。然后i´a¶Â是每个集具有相同颜色的独立顶点集of GÂ的划分称为模糊着色划分。如果G的每个顶点在G的一个_f -分区中都是单点,则图G称为恰好I‡f -优图;如果G恰好有n个I‡f -分区,则n阶恰好I‡f -优图称为紧恰好I‡f -优图。本文旨在研究模糊图中的紧正色优的新概念及其性质。关键词:模糊just chromatic excellent, tight just I‡f -excellent,模糊彩色顶点,模糊kneser图。
本文章由计算机程序翻译,如有差异,请以英文原文为准。