Nuclear Norm Based 2DPCA

Fanlong Zhang, J. Qian, Jian Yang
{"title":"Nuclear Norm Based 2DPCA","authors":"Fanlong Zhang, J. Qian, Jian Yang","doi":"10.1109/ACPR.2013.10","DOIUrl":null,"url":null,"abstract":"This paper presents a novel method, namely nuclear norm based 2DPCA (N-2DPCA), for image feature extraction. Unlike the conventional 2DPCA, N-2DPCA uses a nuclear norm based reconstruction error criterion. The criterion is minimized by converting the nuclear norm based optimization problem into a series of F-norm based optimization problems. N-2DPCA is applied to face recognition and is evaluated using the Extended Yale B and CMU PIE databases. Experimental results demonstrate that our method is more effective and robust than PCA, 2DPCA and L1-Norm based 2DPCA.","PeriodicalId":365633,"journal":{"name":"2013 2nd IAPR Asian Conference on Pattern Recognition","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 2nd IAPR Asian Conference on Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ACPR.2013.10","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

This paper presents a novel method, namely nuclear norm based 2DPCA (N-2DPCA), for image feature extraction. Unlike the conventional 2DPCA, N-2DPCA uses a nuclear norm based reconstruction error criterion. The criterion is minimized by converting the nuclear norm based optimization problem into a series of F-norm based optimization problems. N-2DPCA is applied to face recognition and is evaluated using the Extended Yale B and CMU PIE databases. Experimental results demonstrate that our method is more effective and robust than PCA, 2DPCA and L1-Norm based 2DPCA.
基于核规范的2DPCA
提出了一种基于核范数的2DPCA (N-2DPCA)图像特征提取方法。与传统的2DPCA不同,N-2DPCA使用基于核范数的重构误差准则。通过将基于核范数的优化问题转化为一系列基于f范数的优化问题,使准则最小化。N-2DPCA应用于人脸识别,并使用扩展耶鲁B和CMU PIE数据库进行评估。实验结果表明,该方法比PCA、2DPCA和基于L1-Norm的2DPCA具有更好的鲁棒性和有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信