Heterogeneous Particle Swarm Optimizer and its Application in Aircraft Manufacturing Logistics

Yulian Cao, Mengchu Zhou, Wenfeng Li, G. Lodewijks
{"title":"Heterogeneous Particle Swarm Optimizer and its Application in Aircraft Manufacturing Logistics","authors":"Yulian Cao, Mengchu Zhou, Wenfeng Li, G. Lodewijks","doi":"10.1109/ICNSC48988.2020.9238107","DOIUrl":null,"url":null,"abstract":"Particle swarm optimization (PSO) attracts much attention due to its ability in solving complex practical engineering problems effectively. To further improve its performance, a heterogeneous particle swarm optimizer (HPSO) is proposed in this work. Five widely used benchmark functions are selected to test its efficiency. Furthermore, five state-of-the-art improved PSO variants are selected for a comparisons purpose. The results demonstrate that HPSO is better than the other five algorithms. A logistics problem in aircraft manufacturing is then studied and solved. The results show HPSO's superiority over its tested PSO variants.","PeriodicalId":412290,"journal":{"name":"2020 IEEE International Conference on Networking, Sensing and Control (ICNSC)","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Conference on Networking, Sensing and Control (ICNSC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICNSC48988.2020.9238107","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Particle swarm optimization (PSO) attracts much attention due to its ability in solving complex practical engineering problems effectively. To further improve its performance, a heterogeneous particle swarm optimizer (HPSO) is proposed in this work. Five widely used benchmark functions are selected to test its efficiency. Furthermore, five state-of-the-art improved PSO variants are selected for a comparisons purpose. The results demonstrate that HPSO is better than the other five algorithms. A logistics problem in aircraft manufacturing is then studied and solved. The results show HPSO's superiority over its tested PSO variants.
异构粒子群优化算法及其在飞机制造物流中的应用
粒子群算法(PSO)因其能够有效地解决复杂的实际工程问题而备受关注。为了进一步提高其性能,本文提出了一种异构粒子群优化器(HPSO)。选择了五个常用的基准函数来测试其效率。此外,为了进行比较,选择了五个最先进的改进PSO变体。结果表明,HPSO算法优于其他5种算法。然后研究并解决了飞机制造中的物流问题。结果表明,与已测试的PSO变体相比,HPSO具有优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信