Inducing History Representations for Broad Coverage Statistical Parsing

James Henderson
{"title":"Inducing History Representations for Broad Coverage Statistical Parsing","authors":"James Henderson","doi":"10.3115/1073445.1073459","DOIUrl":null,"url":null,"abstract":"We present a neural network method for inducing representations of parse histories and using these history representations to estimate the probabilities needed by a statistical left-corner parser. The resulting statistical parser achieves performance (89.1% F-measure) on the Penn Treebank which is only 0.6% below the best current parser for this task, despite using a smaller vocabulary size and less prior linguistic knowledge. Crucial to this success is the use of structurally determined soft biases in inducing the representation of the parse history, and no use of hard independence assumptions.","PeriodicalId":277518,"journal":{"name":"Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - NAACL '03","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"109","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - NAACL '03","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3115/1073445.1073459","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 109

Abstract

We present a neural network method for inducing representations of parse histories and using these history representations to estimate the probabilities needed by a statistical left-corner parser. The resulting statistical parser achieves performance (89.1% F-measure) on the Penn Treebank which is only 0.6% below the best current parser for this task, despite using a smaller vocabulary size and less prior linguistic knowledge. Crucial to this success is the use of structurally determined soft biases in inducing the representation of the parse history, and no use of hard independence assumptions.
引申历史表示用于大范围统计分析
我们提出了一种神经网络方法来诱导解析历史的表示,并使用这些历史表示来估计统计左角解析器所需的概率。结果统计解析器在Penn Treebank上实现了性能(89.1% F-measure),仅比当前最佳解析器低0.6%,尽管使用了较小的词汇量和较少的先验语言知识。这一成功的关键是在诱导解析历史的表示时使用结构决定的软偏差,而不使用硬独立性假设。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信