First-Principle Investigation of Structural, Elastic, Electronic and Thermal Properties of Dysprosium Hafnate Oxides

H. Niu
{"title":"First-Principle Investigation of Structural, Elastic, Electronic and Thermal Properties of Dysprosium Hafnate Oxides","authors":"H. Niu","doi":"10.1115/IMECE2018-87099","DOIUrl":null,"url":null,"abstract":"Systematic first-principles calculations based on density functional theory were performed on Dy2HfxO3+2x (x = 0, 1, and 2) compositions. A complete set of elastic parameters including elastic constants, Hill’s bulk moduli, Young’s moduli, shear moduli and Poisson’s ratio were calculated. Analyses of densities of states and charge densities and electron localization functions suggest that the oxide bonds are highly ionic with some degree of covalency in the Hf-O bonds. Thermal properties including the mean sound velocity, Debye temperature, and minimum thermal conductivity were obtained from the elastic constants.","PeriodicalId":119074,"journal":{"name":"Volume 12: Materials: Genetics to Structures","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 12: Materials: Genetics to Structures","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/IMECE2018-87099","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Systematic first-principles calculations based on density functional theory were performed on Dy2HfxO3+2x (x = 0, 1, and 2) compositions. A complete set of elastic parameters including elastic constants, Hill’s bulk moduli, Young’s moduli, shear moduli and Poisson’s ratio were calculated. Analyses of densities of states and charge densities and electron localization functions suggest that the oxide bonds are highly ionic with some degree of covalency in the Hf-O bonds. Thermal properties including the mean sound velocity, Debye temperature, and minimum thermal conductivity were obtained from the elastic constants.
铪酸镝氧化物的结构、弹性、电子和热性质的第一性原理研究
基于密度泛函理论,对Dy2HfxO3+2x (x = 0,1,和2)成分进行了系统的第一性原理计算。计算了弹性常数、希尔体积模量、杨氏模量、剪切模量和泊松比等完整的弹性参数。态密度、电荷密度和电子定位函数的分析表明,氧化键是高度离子化的,在Hf-O键中具有一定程度的共价。热性能包括平均声速、德拜温度和最小导热系数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信