Discrete Damage Modeling for a Transverse Compression Experiment of a Polymer Matrix Composite

M. Flores, Nathan Sesar, B. Wheeler, Andrew Sharits, D. Mollenhauer
{"title":"Discrete Damage Modeling for a Transverse Compression Experiment of a Polymer Matrix Composite","authors":"M. Flores, Nathan Sesar, B. Wheeler, Andrew Sharits, D. Mollenhauer","doi":"10.12783/ASC33/26006","DOIUrl":null,"url":null,"abstract":"Strengthening the fundamental understanding of micromechanical methods in continuity is a critical aspect in developing and designing future composite systems. Virtual testing has provided additional understanding of the behavior of materials on a microstructural scale. However, experiments must be executed to determine their validity. Modeling realistic microstructures under realistic loading conditions could help develop physically based micromechanical constitutive laws needed to predict the intrinsic failure. In this study, discrete damage modeling was performed on a microstructure of polymer matrix composite under transverse compressive loading. The discrete damage model utilized a Regularized eXtended Finite Element Methodology (RXFEM formulation to initiate cracks, a Cohesive Zone Methodology (CZM) was used to simulate crack propagation, as well as debonding between the fibers and matrix. The discrete damage model provides insight to the microstructural behavior under transverse loading and correlates well with experiment.","PeriodicalId":337735,"journal":{"name":"American Society for Composites 2018","volume":"89 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"American Society for Composites 2018","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12783/ASC33/26006","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Strengthening the fundamental understanding of micromechanical methods in continuity is a critical aspect in developing and designing future composite systems. Virtual testing has provided additional understanding of the behavior of materials on a microstructural scale. However, experiments must be executed to determine their validity. Modeling realistic microstructures under realistic loading conditions could help develop physically based micromechanical constitutive laws needed to predict the intrinsic failure. In this study, discrete damage modeling was performed on a microstructure of polymer matrix composite under transverse compressive loading. The discrete damage model utilized a Regularized eXtended Finite Element Methodology (RXFEM formulation to initiate cracks, a Cohesive Zone Methodology (CZM) was used to simulate crack propagation, as well as debonding between the fibers and matrix. The discrete damage model provides insight to the microstructural behavior under transverse loading and correlates well with experiment.
聚合物基复合材料横向压缩实验的离散损伤建模
加强对连续性微力学方法的基本理解是开发和设计未来复合材料系统的关键方面。虚拟测试提供了在微观结构尺度上对材料行为的额外理解。然而,必须进行实验来确定其有效性。模拟真实加载条件下的真实微观结构可以帮助建立基于物理的微观力学本构定律,从而预测内在破坏。在本研究中,对聚合物基复合材料在横向压缩载荷下的微观结构进行了离散损伤建模。离散损伤模型采用正则化扩展有限元法(RXFEM)来模拟裂纹的初始化,采用内聚区法(CZM)来模拟裂纹的扩展以及纤维与基体之间的脱粘。离散损伤模型能较好地反映材料在横向载荷作用下的微观结构行为,与实验结果吻合较好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信