Quasi-interpolation for Volumetric Data Reconstruction in S_4^2(Delta_3)

You Lu, Lianen Ji
{"title":"Quasi-interpolation for Volumetric Data Reconstruction in S_4^2(Delta_3)","authors":"You Lu, Lianen Ji","doi":"10.1109/ICDH.2012.56","DOIUrl":null,"url":null,"abstract":"In this paper we propose a method based on basis in S<sub>4</sub><sup>2</sup>(Δ<sub>3</sub>) for reconstructing volumetric data sampled on the BCC lattice. In particular we implement numerical representation of a trivariate box spline reconstruction kernel in S<sub>4</sub><sup>2</sup>(Δ<sub>3</sub>). It is proved that the box spline have an uniform property and reconstruction that can be considered as a three dimensional extension of the well-known Zwart-Powell element in 2D. At the same time, we obtain the quasi-interpolation operators in S<sub>4</sub><sup>2</sup>(Δ<sub>3</sub>) and some supporting numerical results are presented.","PeriodicalId":308799,"journal":{"name":"2012 Fourth International Conference on Digital Home","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 Fourth International Conference on Digital Home","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDH.2012.56","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper we propose a method based on basis in S423) for reconstructing volumetric data sampled on the BCC lattice. In particular we implement numerical representation of a trivariate box spline reconstruction kernel in S423). It is proved that the box spline have an uniform property and reconstruction that can be considered as a three dimensional extension of the well-known Zwart-Powell element in 2D. At the same time, we obtain the quasi-interpolation operators in S423) and some supporting numerical results are presented.
S_4^2(Delta_3)中体积数据重构的拟插值方法
在本文中,我们提出了一种基于S42(Δ3)中的基的方法来重建在BCC格上采样的体积数据。特别地,我们在S42(Δ3)中实现了一个三元盒样条重构核的数值表示。证明了箱形样条具有均匀的性质和重构,可以看作是众所周知的Zwart-Powell元在二维中的三维扩展。同时,我们得到了S42(Δ3)中的拟插值算子,并给出了一些支持的数值结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信