Abdul Razaque, Vladislav Alexandrov, Muder Almiani, Bandar Alotaibi, M. Alotaibi, Ayman Al-Dmour
{"title":"Comparative Analysis of Digital Signature and Elliptic Curve Digital Signature Algorithms for the Validation of QR Code Vulnerabilities","authors":"Abdul Razaque, Vladislav Alexandrov, Muder Almiani, Bandar Alotaibi, M. Alotaibi, Ayman Al-Dmour","doi":"10.1109/SDS54264.2021.9732150","DOIUrl":null,"url":null,"abstract":"Quick response (QR) codes are currently used ubiq-uitously. Their interaction protocol design is initially unsecured. It forces users to scan QR codes, which makes it harder to differentiate a genuine code from a malicious one. Intruders can change the original QR code and make it fake, which can lead to phishing websites that collect sensitive data. The interaction model can be improved and made more secure by adding some modifications to the backend side of the application. This paper addresses the vulnerabilities of QR codes and recommends improvements in security design. Furthermore, two state-of-the-art algorithms, Digital Signature (DS) and Elliptic Curve Digital Signature (ECDS), are analytically compared to determine their strengths in QR code security.","PeriodicalId":394607,"journal":{"name":"2021 Eighth International Conference on Software Defined Systems (SDS)","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 Eighth International Conference on Software Defined Systems (SDS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SDS54264.2021.9732150","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
Quick response (QR) codes are currently used ubiq-uitously. Their interaction protocol design is initially unsecured. It forces users to scan QR codes, which makes it harder to differentiate a genuine code from a malicious one. Intruders can change the original QR code and make it fake, which can lead to phishing websites that collect sensitive data. The interaction model can be improved and made more secure by adding some modifications to the backend side of the application. This paper addresses the vulnerabilities of QR codes and recommends improvements in security design. Furthermore, two state-of-the-art algorithms, Digital Signature (DS) and Elliptic Curve Digital Signature (ECDS), are analytically compared to determine their strengths in QR code security.