A New Approach on Some Special Curves

Tuba AĞIRMAN AYDIN, H. Kocayiğit
{"title":"A New Approach on Some Special Curves","authors":"Tuba AĞIRMAN AYDIN, H. Kocayiğit","doi":"10.47000/tjmcs.1141025","DOIUrl":null,"url":null,"abstract":"In this paper, we obtain some characterizations for a Frenet curve with the help of an alternative frame different from Frenet frame. Also, in the present study we consider weak biharmonic and harmonic 1-type curves by using the mean curvature vector field of the curve. We also study 1-type and biharmonic curves whose mean curvature vector field is in the kernel of Laplacian. We give some theorems for them in the Euclidean 3-space. Moreover, we give the classifications of these type curves.","PeriodicalId":177259,"journal":{"name":"Turkish Journal of Mathematics and Computer Science","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Turkish Journal of Mathematics and Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.47000/tjmcs.1141025","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we obtain some characterizations for a Frenet curve with the help of an alternative frame different from Frenet frame. Also, in the present study we consider weak biharmonic and harmonic 1-type curves by using the mean curvature vector field of the curve. We also study 1-type and biharmonic curves whose mean curvature vector field is in the kernel of Laplacian. We give some theorems for them in the Euclidean 3-space. Moreover, we give the classifications of these type curves.
一些特殊曲线的新方法
本文利用不同于Frenet框架的替代框架,得到了Frenet曲线的一些表征。此外,本文还利用曲线的平均曲率向量场来考虑弱双调和和调和1型曲线。我们还研究了平均曲率向量场在拉普拉斯核内的1型曲线和双调和曲线。我们在欧几里德三维空间中给出了它们的定理。并对这些类型曲线进行了分类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信