Industrial applications of short-term prediction on chaotic time series by local fuzzy reconstruction method

T. Iokibe, M. Koyama, M. Taniguchi
{"title":"Industrial applications of short-term prediction on chaotic time series by local fuzzy reconstruction method","authors":"T. Iokibe, M. Koyama, M. Taniguchi","doi":"10.1109/KES.1997.616869","DOIUrl":null,"url":null,"abstract":"The paper describes nonlinear short-term prediction as a possible application of chaos engineering. The authors developed the local fuzzy reconstruction method which is categorized as a nonlinear reconstruction method for nonlinear short-term prediction, and compared prediction performance with linear reconstruction methods, i.e. the Gram-Schumidt orthogonal system method and the tessellation method. The result is that the local fuzzy reconstruction method has advantages in prediction performance and computation time. The authors applied the local fuzzy reconstruction method to practical time series data. The paper considers the local reconstruction method as nonlinear short-term prediction and applications in industrial fields.","PeriodicalId":166931,"journal":{"name":"Proceedings of 1st International Conference on Conventional and Knowledge Based Intelligent Electronic Systems. KES '97","volume":"49 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1997-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of 1st International Conference on Conventional and Knowledge Based Intelligent Electronic Systems. KES '97","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/KES.1997.616869","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

The paper describes nonlinear short-term prediction as a possible application of chaos engineering. The authors developed the local fuzzy reconstruction method which is categorized as a nonlinear reconstruction method for nonlinear short-term prediction, and compared prediction performance with linear reconstruction methods, i.e. the Gram-Schumidt orthogonal system method and the tessellation method. The result is that the local fuzzy reconstruction method has advantages in prediction performance and computation time. The authors applied the local fuzzy reconstruction method to practical time series data. The paper considers the local reconstruction method as nonlinear short-term prediction and applications in industrial fields.
局部模糊重建方法在混沌时间序列短期预测中的工业应用
本文描述了非线性短期预测作为混沌工程的一种可能应用。本文提出了一种用于非线性短期预测的非线性重建方法——局部模糊重建方法,并与线性重建方法(Gram-Schumidt正交系统法和细分法)的预测性能进行了比较。结果表明,局部模糊重建方法在预测性能和计算时间方面具有优势。将局部模糊重构方法应用于实际时间序列数据。本文将局部重建方法视为一种非线性短期预测方法,并将其应用于工业领域。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信