Application of Deep Reinforcement Learning in Werewolf Game Agents

Tianhe Wang, Tomoyuki Kaneko
{"title":"Application of Deep Reinforcement Learning in Werewolf Game Agents","authors":"Tianhe Wang, Tomoyuki Kaneko","doi":"10.1109/TAAI.2018.00016","DOIUrl":null,"url":null,"abstract":"Werewolf, also known as Mafia, is a kind of game with imperfect information. Werewolf game agents must cope with two kinds of problems, \"decision on who to trust or to kill\", and \"decision on information exchange\". In this paper, we focus on the first problem. We apply techniques in Deep Q Network in building werewolf agents. We also improve representation of states and actions based on existing agents trained by Q learning method. Our proposed agents were compared with existing agents trained by Q learning method and with existing agents submitted to the AIWolf Contest, the most famous werewolf game agents contest in Japan. For every role, we prepared four agents with proposed method and investigated average win ratio of four agents in our experiments. Experimental results showed that when agents learned and played with the same group of players, our proposed agents have better player performances than existing agents trained by Q learning method and a part of agents submitted to the AIWolf Contest. We obtained promising results by using reinforcement learning method to solve \"decision on who to trust or to kill\" problem without using heuristic methods.","PeriodicalId":211734,"journal":{"name":"2018 Conference on Technologies and Applications of Artificial Intelligence (TAAI)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 Conference on Technologies and Applications of Artificial Intelligence (TAAI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TAAI.2018.00016","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

Werewolf, also known as Mafia, is a kind of game with imperfect information. Werewolf game agents must cope with two kinds of problems, "decision on who to trust or to kill", and "decision on information exchange". In this paper, we focus on the first problem. We apply techniques in Deep Q Network in building werewolf agents. We also improve representation of states and actions based on existing agents trained by Q learning method. Our proposed agents were compared with existing agents trained by Q learning method and with existing agents submitted to the AIWolf Contest, the most famous werewolf game agents contest in Japan. For every role, we prepared four agents with proposed method and investigated average win ratio of four agents in our experiments. Experimental results showed that when agents learned and played with the same group of players, our proposed agents have better player performances than existing agents trained by Q learning method and a part of agents submitted to the AIWolf Contest. We obtained promising results by using reinforcement learning method to solve "decision on who to trust or to kill" problem without using heuristic methods.
深度强化学习在狼人博弈代理中的应用
《狼人》又称Mafia,是一款信息不完全的游戏。狼人游戏代理必须处理两类问题:“决定信任谁或杀死谁”,以及“决定信息交换”。本文主要研究第一个问题。我们将深度Q网络中的技术应用于狼人代理的构建。我们还基于Q学习方法训练的现有智能体改进了状态和动作的表示。将我们提出的智能体与用Q学习方法训练的现有智能体以及提交给AIWolf Contest(日本最著名的狼人游戏智能体竞赛)的现有智能体进行了比较。对于每个角色,我们用提出的方法制备了4个agent,并在实验中考察了4个agent的平均胜率。实验结果表明,当智能体与同一组玩家学习和比赛时,我们提出的智能体比现有的Q学习方法训练的智能体和一部分提交给AIWolf竞赛的智能体表现更好。在不使用启发式方法的情况下,采用强化学习方法解决“信任谁,杀谁”问题,取得了令人满意的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信