{"title":"Enabling multi-hop ad hoc networks through WiFi Direct multi-group networking","authors":"C. Funai, C. Tapparello, W. Heinzelman","doi":"10.1109/ICCNC.2017.7876178","DOIUrl":null,"url":null,"abstract":"With the increasing availability of mobile devices that natively support ad hoc communication protocols, we are presented with a unique opportunity to realize large scale ad hoc wireless networks. Recently, a novel ad hoc protocol named WiFi Direct has been proposed and standardized by the WiFi Alliance with the objective of facilitating the interconnection of nearby devices. However, WiFi Direct has been designed following a client-server hierarchical architecture, where a single device manages all the communications within a group of devices. In this paper, we propose and analyze different practical solutions for supporting the communications between multiple WiFi Direct groups using Android OS devices. By describing the WiFi Direct standard and the limitations of the current implementation of the Android WiFi Direct framework, we present possible solutions to interconnect different groups to create multi-hop ad hoc networks. Experimental results show that our proposed approaches are feasible with different overhead in terms of energy consumption and delay at the gateway node. Additionally, our experimental results demonstrate the superiority of techniques that exploit the device ability to maintain simultaneous physical connections to multiple groups, enabling multi-hop ad hoc networks with low overhead.","PeriodicalId":135028,"journal":{"name":"2017 International Conference on Computing, Networking and Communications (ICNC)","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"65","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 International Conference on Computing, Networking and Communications (ICNC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCNC.2017.7876178","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 65
Abstract
With the increasing availability of mobile devices that natively support ad hoc communication protocols, we are presented with a unique opportunity to realize large scale ad hoc wireless networks. Recently, a novel ad hoc protocol named WiFi Direct has been proposed and standardized by the WiFi Alliance with the objective of facilitating the interconnection of nearby devices. However, WiFi Direct has been designed following a client-server hierarchical architecture, where a single device manages all the communications within a group of devices. In this paper, we propose and analyze different practical solutions for supporting the communications between multiple WiFi Direct groups using Android OS devices. By describing the WiFi Direct standard and the limitations of the current implementation of the Android WiFi Direct framework, we present possible solutions to interconnect different groups to create multi-hop ad hoc networks. Experimental results show that our proposed approaches are feasible with different overhead in terms of energy consumption and delay at the gateway node. Additionally, our experimental results demonstrate the superiority of techniques that exploit the device ability to maintain simultaneous physical connections to multiple groups, enabling multi-hop ad hoc networks with low overhead.