A. Bucchiarone, Naranker Dulay, Anna Lavygina, A. Marconi, Heorhi Raik, A. Russo
{"title":"An Approach for Collective Adaptation in Socio-Technical Systems","authors":"A. Bucchiarone, Naranker Dulay, Anna Lavygina, A. Marconi, Heorhi Raik, A. Russo","doi":"10.1109/SASOW.2015.12","DOIUrl":null,"url":null,"abstract":"Socio-technical systems are systems where autonomous humans and computational entities collectively collaborate with each other to satisfy their goals in a dynamic environment. To be resilient, such systems need to adapt to unexpected human behaviours and exogenous changes in the environment. In this paper, we describe a framework for the development of social-technical systems where adaptation is itself a collective process driven by the awareness of capabilities, goals, constraints and preferences of humans and entities, and knowledge of the environment. The adaptation is controlled by a multi-criteria decision making function combined with an analytic hierarchic process (AHP). We present our approach, the collective adaptation algorithm, and its application to a smart mobility scenario.","PeriodicalId":384469,"journal":{"name":"2015 IEEE International Conference on Self-Adaptive and Self-Organizing Systems Workshops","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Conference on Self-Adaptive and Self-Organizing Systems Workshops","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SASOW.2015.12","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14
Abstract
Socio-technical systems are systems where autonomous humans and computational entities collectively collaborate with each other to satisfy their goals in a dynamic environment. To be resilient, such systems need to adapt to unexpected human behaviours and exogenous changes in the environment. In this paper, we describe a framework for the development of social-technical systems where adaptation is itself a collective process driven by the awareness of capabilities, goals, constraints and preferences of humans and entities, and knowledge of the environment. The adaptation is controlled by a multi-criteria decision making function combined with an analytic hierarchic process (AHP). We present our approach, the collective adaptation algorithm, and its application to a smart mobility scenario.