Bounds on the error probability of finite-length RaptorQ codes

K. Zhang, J. Jiao, Zixuan Huang, Shaohua Wu, Shushi Gu, Qinyu Zhang
{"title":"Bounds on the error probability of finite-length RaptorQ codes","authors":"K. Zhang, J. Jiao, Zixuan Huang, Shaohua Wu, Shushi Gu, Qinyu Zhang","doi":"10.1109/ICCChina.2017.8330415","DOIUrl":null,"url":null,"abstract":"Massive machine-to-machine (mM2M) communication requires data transmission in short packets, but at present, the theory of short length code design and optimazation is still incompletely. In this paper, we analyze the maximum likelihood (ML) decoding failure probability (DFP) of finite length RaptorQ codes, and propose a theoretical performance bound of DFP on the RaptorQ codes under ML decoding algorithm by investigating the rank of the product of two random coefficient matrices. Moreover, we verify the accuracy of derived theoretical bounds through the Monte Carlo simulations over varied Galois field order. The high accuracy bounds can be used to design near-optimum RaptorQ codes with short and moderate lengths.","PeriodicalId":418396,"journal":{"name":"2017 IEEE/CIC International Conference on Communications in China (ICCC)","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE/CIC International Conference on Communications in China (ICCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCChina.2017.8330415","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Massive machine-to-machine (mM2M) communication requires data transmission in short packets, but at present, the theory of short length code design and optimazation is still incompletely. In this paper, we analyze the maximum likelihood (ML) decoding failure probability (DFP) of finite length RaptorQ codes, and propose a theoretical performance bound of DFP on the RaptorQ codes under ML decoding algorithm by investigating the rank of the product of two random coefficient matrices. Moreover, we verify the accuracy of derived theoretical bounds through the Monte Carlo simulations over varied Galois field order. The high accuracy bounds can be used to design near-optimum RaptorQ codes with short and moderate lengths.
有限长度RaptorQ码的错误概率界
海量机对机(mM2M)通信要求数据以短数据包的形式传输,但目前,短长度码的设计与优化理论尚不完善。本文分析了有限长度RaptorQ码的最大似然解码失败概率(DFP),并通过研究两个随机系数矩阵乘积的秩,提出了在ML解码算法下RaptorQ码的最大似然解码失败概率的理论性能界。此外,我们还通过不同伽罗瓦场阶的蒙特卡罗模拟验证了所得理论边界的准确性。高精度边界可以用于设计短长度和中等长度的接近最佳的RaptorQ代码。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信