Thai Clickbait Detection Algorithms Using Natural Language Processing with Machine Learning Techniques

Praphan Klairith, Sansiri Tanachutiwat
{"title":"Thai Clickbait Detection Algorithms Using Natural Language Processing with Machine Learning Techniques","authors":"Praphan Klairith, Sansiri Tanachutiwat","doi":"10.1109/ICEAST.2018.8434447","DOIUrl":null,"url":null,"abstract":"This paper proposes the approach based on machine learning for detection of Thai clickbait. The clickbait messages often adopt eye-catching on wording, lagging of information on a content to attract visitors. We contribute the clickbait corpus by crowdsourcing, 30,000 of headlines are selected to draw up the dataset. In this work attempt to develop clickbait detection model using two type of features in the embedding layer and three different of networks in the hidden layer. BiLSTM with word level embedding performs very well achieving accuracy rate of 0.98, fl-score of 0.98.","PeriodicalId":138654,"journal":{"name":"2018 International Conference on Engineering, Applied Sciences, and Technology (ICEAST)","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 International Conference on Engineering, Applied Sciences, and Technology (ICEAST)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICEAST.2018.8434447","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

This paper proposes the approach based on machine learning for detection of Thai clickbait. The clickbait messages often adopt eye-catching on wording, lagging of information on a content to attract visitors. We contribute the clickbait corpus by crowdsourcing, 30,000 of headlines are selected to draw up the dataset. In this work attempt to develop clickbait detection model using two type of features in the embedding layer and three different of networks in the hidden layer. BiLSTM with word level embedding performs very well achieving accuracy rate of 0.98, fl-score of 0.98.
使用自然语言处理和机器学习技术的泰国标题党检测算法
本文提出了一种基于机器学习的泰国标题党检测方法。标题党信息通常采用醒目的措辞,内容上的滞后信息来吸引访问者。我们通过众包的方式贡献标题党语料库,从3万条新闻标题中挑选出数据集。在这项工作中,我们尝试在嵌入层中使用两种特征,在隐藏层中使用三种不同的网络来开发标题党检测模型。采用词级嵌入的BiLSTM表现良好,准确率为0.98,fl-score为0.98。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信