Latent Terrain Representations for Trajectory Prediction

Andrew W. Feng, A. Gordon
{"title":"Latent Terrain Representations for Trajectory Prediction","authors":"Andrew W. Feng, A. Gordon","doi":"10.1145/3356392.3365218","DOIUrl":null,"url":null,"abstract":"In natural outdoor environments, the shape of the surface terrain is an important factor in selecting a traversal path, both when operating off-road vehicles and maneuvering on foot. With the increased availability of digital elevation models for outdoor terrain, new opportunities exist to exploit this contextual information to improve automated path prediction. In this paper, we investigate predictive neural network models for outdoor trajectories that traverse terrain with known surface topography. We describe a method of encoding digital surface models as vectors in latent space using Wasserstein Autoencoders, and their use in convolutional neural networks that predict future trajectory positions from past trajectory data. We observe gains in predictive performance across three experiments, using both synthetic and recorded trajectories on real-world terrain.","PeriodicalId":415844,"journal":{"name":"Proceedings of the 1st ACM SIGSPATIAL International Workshop on Computing with Multifaceted Movement Data","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 1st ACM SIGSPATIAL International Workshop on Computing with Multifaceted Movement Data","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3356392.3365218","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

In natural outdoor environments, the shape of the surface terrain is an important factor in selecting a traversal path, both when operating off-road vehicles and maneuvering on foot. With the increased availability of digital elevation models for outdoor terrain, new opportunities exist to exploit this contextual information to improve automated path prediction. In this paper, we investigate predictive neural network models for outdoor trajectories that traverse terrain with known surface topography. We describe a method of encoding digital surface models as vectors in latent space using Wasserstein Autoencoders, and their use in convolutional neural networks that predict future trajectory positions from past trajectory data. We observe gains in predictive performance across three experiments, using both synthetic and recorded trajectories on real-world terrain.
用于轨迹预测的潜在地形表示
在室外自然环境中,无论是越野车辆还是步行,地表地形的形状都是选择穿越路径的重要因素。随着室外地形的数字高程模型的可用性增加,利用这些上下文信息来改进自动路径预测的机会出现了。在本文中,我们研究预测神经网络模型的户外轨迹穿越地形与已知的表面地形。我们描述了一种使用Wasserstein自动编码器将数字表面模型编码为潜在空间向量的方法,以及它们在卷积神经网络中的应用,该网络可以从过去的轨迹数据中预测未来的轨迹位置。我们在三个实验中观察到预测性能的提高,使用了真实地形上的合成和记录轨迹。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信