{"title":"Adaptive Booth Algorithm for Three-Integers Multiplication for Reconfigurable Mesh","authors":"Y. Ben-Asher, Esti Stein","doi":"10.1142/S0219265915500097","DOIUrl":null,"url":null,"abstract":"This paper presents a three-integers multiplication algorithm R = A * X * Y for Reconfigurable Mesh (RM). It is based on a three-integer multiplication algorithm for faster FPGA implementations. We show that multiplying three integers of n bits can be performed on a 3D RM of size (3n+log n + 1)×(2√n+1+3) × √n+1 using 44+18.log log MNO steps, where MNO is a bound which is related to the number of sequences of '1's in the multiplied numbers. The value of MNO is bounded by n but experimentally we show that on the average it is sqrt n. Two algorithms for solving multiplication on a RM exists and their techniques are asymptotically better time wise, O(1) and O(log*n), but they suffer from large hidden constants and slow data insertion time O(√n) respectively. The proposed algorithm is relatively simple and faster on the average (via sampling input values) then the previous two algorithms thus contributes in making the RM a practical and feasible model. Our experiments show a significant improvement in the expected number of elementary operations for the proposed algorithm.","PeriodicalId":153864,"journal":{"name":"2014 IEEE International Parallel & Distributed Processing Symposium Workshops","volume":"74 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE International Parallel & Distributed Processing Symposium Workshops","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/S0219265915500097","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
This paper presents a three-integers multiplication algorithm R = A * X * Y for Reconfigurable Mesh (RM). It is based on a three-integer multiplication algorithm for faster FPGA implementations. We show that multiplying three integers of n bits can be performed on a 3D RM of size (3n+log n + 1)×(2√n+1+3) × √n+1 using 44+18.log log MNO steps, where MNO is a bound which is related to the number of sequences of '1's in the multiplied numbers. The value of MNO is bounded by n but experimentally we show that on the average it is sqrt n. Two algorithms for solving multiplication on a RM exists and their techniques are asymptotically better time wise, O(1) and O(log*n), but they suffer from large hidden constants and slow data insertion time O(√n) respectively. The proposed algorithm is relatively simple and faster on the average (via sampling input values) then the previous two algorithms thus contributes in making the RM a practical and feasible model. Our experiments show a significant improvement in the expected number of elementary operations for the proposed algorithm.