QuickView: advanced search of tweets

Xiaohua Liu, Long Jiang, Furu Wei, M. Zhou
{"title":"QuickView: advanced search of tweets","authors":"Xiaohua Liu, Long Jiang, Furu Wei, M. Zhou","doi":"10.1145/2009916.2010157","DOIUrl":null,"url":null,"abstract":"Tweets have become a comprehensive repository for real-time information. However, it is often hard for users to quickly get information they are interested in from tweets, owing to the sheer volume of tweets as well as their noisy and informal nature. We present QuickView, an NLP-based tweet search platform to tackle this issue. Specifically, it exploits a series of natural language processing technologies, such as tweet normalization, named entity recognition, semantic role labeling, sentiment analysis, tweet classification, to extract useful information, i.e., named entities, events, opinions, etc., from a large volume of tweets. Then, non-noisy tweets, together with the mined information, are indexed, on top of which two brand new scenarios are enabled, i.e., categorized browsing and advanced search, allowing users to effectively access either the tweets or fine-grained information they are interested in.","PeriodicalId":356580,"journal":{"name":"Proceedings of the 34th international ACM SIGIR conference on Research and development in Information Retrieval","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 34th international ACM SIGIR conference on Research and development in Information Retrieval","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2009916.2010157","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Tweets have become a comprehensive repository for real-time information. However, it is often hard for users to quickly get information they are interested in from tweets, owing to the sheer volume of tweets as well as their noisy and informal nature. We present QuickView, an NLP-based tweet search platform to tackle this issue. Specifically, it exploits a series of natural language processing technologies, such as tweet normalization, named entity recognition, semantic role labeling, sentiment analysis, tweet classification, to extract useful information, i.e., named entities, events, opinions, etc., from a large volume of tweets. Then, non-noisy tweets, together with the mined information, are indexed, on top of which two brand new scenarios are enabled, i.e., categorized browsing and advanced search, allowing users to effectively access either the tweets or fine-grained information they are interested in.
QuickView: tweets的高级搜索
Tweets已经成为实时信息的综合存储库。然而,由于tweet的庞大数量以及它们的嘈杂和非正式性,用户通常很难从tweet中快速获取他们感兴趣的信息。我们提出QuickView,一个基于nlp的tweet搜索平台来解决这个问题。具体而言,它利用推文归一化、命名实体识别、语义角色标注、情感分析、推文分类等一系列自然语言处理技术,从大量推文中提取有用信息,即命名实体、事件、观点等。然后,对无噪声的推文以及挖掘出来的信息进行索引,并在此基础上启用分类浏览和高级搜索两种全新的场景,允许用户有效地访问他们感兴趣的推文或细粒度信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信