Solution of a differential game with geographically distributed resources

R. M. de la Guardia, Y. Sawada, H. Mukai
{"title":"Solution of a differential game with geographically distributed resources","authors":"R. M. de la Guardia, Y. Sawada, H. Mukai","doi":"10.1109/SICE.2001.977871","DOIUrl":null,"url":null,"abstract":"We present a computer tool for finding a local Nash solution to an adversarial game in which the units of two opposing teams are distributed over a large geographical area. The differential game consists of a quadratic payoff function and a set of ordinary differential equations describing the system dynamics of the unit distribution over a discretized geographical area. The optimum strategy for each team is determined using an iterative algorithm for finding a local Nash equilibrium solution for the game. Experimental results are presented that demonstrate the validity of this concept.","PeriodicalId":415046,"journal":{"name":"SICE 2001. Proceedings of the 40th SICE Annual Conference. International Session Papers (IEEE Cat. No.01TH8603)","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SICE 2001. Proceedings of the 40th SICE Annual Conference. International Session Papers (IEEE Cat. No.01TH8603)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SICE.2001.977871","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

We present a computer tool for finding a local Nash solution to an adversarial game in which the units of two opposing teams are distributed over a large geographical area. The differential game consists of a quadratic payoff function and a set of ordinary differential equations describing the system dynamics of the unit distribution over a discretized geographical area. The optimum strategy for each team is determined using an iterative algorithm for finding a local Nash equilibrium solution for the game. Experimental results are presented that demonstrate the validity of this concept.
具有地理分布资源的微分对策的解
我们提出了一个计算机工具,用于寻找对抗游戏的局部纳什解决方案,其中两个对立团队的单位分布在一个大的地理区域。微分对策由一个二次支付函数和一组描述离散地理区域上单位分布的系统动力学的常微分方程组成。每个团队的最佳策略是使用迭代算法来寻找游戏的局部纳什均衡解。实验结果证明了这一概念的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信