Analyzing Invariants in Cyber-Physical Systems using Latent Factor Regression

M. Momtazpour, Jinghe Zhang, S. Rahman, Ratnesh K. Sharma, Naren Ramakrishnan
{"title":"Analyzing Invariants in Cyber-Physical Systems using Latent Factor Regression","authors":"M. Momtazpour, Jinghe Zhang, S. Rahman, Ratnesh K. Sharma, Naren Ramakrishnan","doi":"10.1145/2783258.2788605","DOIUrl":null,"url":null,"abstract":"The analysis of large scale data logged from complex cyber-physical systems, such as microgrids, often entails the discovery of invariants capturing functional as well as operational relationships underlying such large systems. We describe a latent factor approach to infer invariants underlying system variables and how we can leverage these relationships to monitor a cyber-physical system. In particular we illustrate how this approach helps rapidly identify outliers during system operation.","PeriodicalId":243428,"journal":{"name":"Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"24","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2783258.2788605","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 24

Abstract

The analysis of large scale data logged from complex cyber-physical systems, such as microgrids, often entails the discovery of invariants capturing functional as well as operational relationships underlying such large systems. We describe a latent factor approach to infer invariants underlying system variables and how we can leverage these relationships to monitor a cyber-physical system. In particular we illustrate how this approach helps rapidly identify outliers during system operation.
利用潜在因子回归分析信息物理系统的不变量
对复杂的网络物理系统(如微电网)记录的大规模数据进行分析,通常需要发现不变量,这些不变量捕获了此类大型系统背后的功能和操作关系。我们描述了一种潜在因素方法来推断系统变量的不变量,以及我们如何利用这些关系来监控网络物理系统。我们特别说明了这种方法如何在系统运行期间帮助快速识别异常值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信