Automatic Control Network Anomaly Detection Based on Behavior Understanding

Jianhui Luo
{"title":"Automatic Control Network Anomaly Detection Based on Behavior Understanding","authors":"Jianhui Luo","doi":"10.1109/ICWS53863.2021.00087","DOIUrl":null,"url":null,"abstract":"In automatic control networks, for man-in-the-middle attacks, they tamper with the control instructions and the underlying feedback data, but the protocol and format of the data packet, making the attack difficult to detect. In this paper, we introduce a network intrusion detection model based on the automatic control network behavior understanding and machine learning. The model can understand the operating status of the control network from the correlation of parameter status, find abnormal behavior status that does not conform to the normal operating status, and locate and trace the source of the tampered instruction or parameter to understand the attacker's intention. We verified the feasibility and practicability of the model in simulating real automatic control network scenarios.","PeriodicalId":213320,"journal":{"name":"2021 IEEE International Conference on Web Services (ICWS)","volume":"49 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Conference on Web Services (ICWS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICWS53863.2021.00087","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In automatic control networks, for man-in-the-middle attacks, they tamper with the control instructions and the underlying feedback data, but the protocol and format of the data packet, making the attack difficult to detect. In this paper, we introduce a network intrusion detection model based on the automatic control network behavior understanding and machine learning. The model can understand the operating status of the control network from the correlation of parameter status, find abnormal behavior status that does not conform to the normal operating status, and locate and trace the source of the tampered instruction or parameter to understand the attacker's intention. We verified the feasibility and practicability of the model in simulating real automatic control network scenarios.
基于行为理解的自动控制网络异常检测
在自动控制网络中,中间人攻击虽然篡改了控制指令和底层反馈数据,但篡改了数据包的协议和格式,使得攻击难以被检测到。本文介绍了一种基于自动控制网络行为理解和机器学习的网络入侵检测模型。该模型可以从参数状态的相关性中了解控制网络的运行状态,发现不符合正常运行状态的异常行为状态,定位和追踪被篡改指令或参数的来源,了解攻击者的意图。通过仿真实际自动控制网络场景,验证了该模型的可行性和实用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信