Hybrid Multi-elimination ILU Preconditioners on GPUs

D. Lukarski, H. Anzt, S. Tomov, J. Dongarra
{"title":"Hybrid Multi-elimination ILU Preconditioners on GPUs","authors":"D. Lukarski, H. Anzt, S. Tomov, J. Dongarra","doi":"10.1109/IPDPSW.2014.7","DOIUrl":null,"url":null,"abstract":"Iterative solvers for sparse linear systems often benefit from using preconditioners. While there exist implementations for many iterative methods that leverage the computing power of accelerators, porting the latest developments in preconditioners to accelerators has been challenging. In this paper we develop a selfadaptive multi-elimination preconditioner for graphics processing units (GPUs). The preconditioner is based on a multi-level incomplete LU factorization and uses a direct dense solver for the bottom-level system. For test matrices from the University of Florida matrix collection, we investigate the influence of handling the triangular solvers in the distinct iteration steps in either single or double precision arithmetic. Integrated into a Conjugate Gradient method, we show that our multi-elimination algorithm is highly competitive against popular preconditioners, including multi-colored symmetric Gauss-Seidel relaxation preconditioners, and (multi-colored symmetric) ILU for numerous problems.","PeriodicalId":153864,"journal":{"name":"2014 IEEE International Parallel & Distributed Processing Symposium Workshops","volume":"66 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE International Parallel & Distributed Processing Symposium Workshops","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IPDPSW.2014.7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Iterative solvers for sparse linear systems often benefit from using preconditioners. While there exist implementations for many iterative methods that leverage the computing power of accelerators, porting the latest developments in preconditioners to accelerators has been challenging. In this paper we develop a selfadaptive multi-elimination preconditioner for graphics processing units (GPUs). The preconditioner is based on a multi-level incomplete LU factorization and uses a direct dense solver for the bottom-level system. For test matrices from the University of Florida matrix collection, we investigate the influence of handling the triangular solvers in the distinct iteration steps in either single or double precision arithmetic. Integrated into a Conjugate Gradient method, we show that our multi-elimination algorithm is highly competitive against popular preconditioners, including multi-colored symmetric Gauss-Seidel relaxation preconditioners, and (multi-colored symmetric) ILU for numerous problems.
gpu上的混合多消除ILU预调节器
稀疏线性系统的迭代求解通常受益于使用前置条件。虽然存在许多利用加速器计算能力的迭代方法的实现,但将前置条件的最新发展移植到加速器上一直具有挑战性。本文开发了一种适用于图形处理器(gpu)的自适应多消去预调节器。该预调节器基于多级不完全LU分解,并对底层系统使用直接密集求解器。对于来自佛罗里达大学矩阵集合的测试矩阵,我们研究了在单精度或双精度算法中处理三角形求解器在不同迭代步骤中的影响。结合共轭梯度方法,我们证明了我们的多消去算法与流行的预条件(包括多色对称高斯-赛德尔松弛预条件)和(多色对称)ILU在许多问题上具有很强的竞争力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信