Reciprocal and non-reciprocal wave phenomena in quasi-periodic particle chains

Y. Mazor, B. Steinberg
{"title":"Reciprocal and non-reciprocal wave phenomena in quasi-periodic particle chains","authors":"Y. Mazor, B. Steinberg","doi":"10.1109/METAMATERIALS.2015.7342574","DOIUrl":null,"url":null,"abstract":"Quasi-Periodic (QP) particle chains exhibit unique properties not observed in periodic ones. Furthermore, they inherently support significant long-range interactions and radiation to the surrounding medium. Hence they are fundamentally different from traditional QP structures governed by the Harper's model or the almost-Mathieu operator. We present a mathematical framework for QP particle chains and study their electrodynamics. They support guided modes that exhibit a complex interaction with the light cone, and possess a two-dimensional fractal-like structure in the frequencywavenumber space thus making the unique definition of modal phase velocity impossible. However, a well-defined group velocity is revealed due to the fractals inner structure. We also show initial study of non-reciprocal QP structures.","PeriodicalId":143626,"journal":{"name":"2015 9th International Congress on Advanced Electromagnetic Materials in Microwaves and Optics (METAMATERIALS)","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 9th International Congress on Advanced Electromagnetic Materials in Microwaves and Optics (METAMATERIALS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/METAMATERIALS.2015.7342574","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Quasi-Periodic (QP) particle chains exhibit unique properties not observed in periodic ones. Furthermore, they inherently support significant long-range interactions and radiation to the surrounding medium. Hence they are fundamentally different from traditional QP structures governed by the Harper's model or the almost-Mathieu operator. We present a mathematical framework for QP particle chains and study their electrodynamics. They support guided modes that exhibit a complex interaction with the light cone, and possess a two-dimensional fractal-like structure in the frequencywavenumber space thus making the unique definition of modal phase velocity impossible. However, a well-defined group velocity is revealed due to the fractals inner structure. We also show initial study of non-reciprocal QP structures.
准周期粒子链中的倒易和非倒易波现象
准周期(QP)粒子链表现出在周期链中观察不到的独特性质。此外,它们固有地支持重要的远程相互作用和对周围介质的辐射。因此,它们与由Harper’s模型或almost-Mathieu算子控制的传统QP结构有着根本的不同。我们提出了QP粒子链的数学框架,并研究了它们的电动力学。它们支持与光锥表现出复杂相互作用的引导模式,并且在频率波数空间中具有二维分形结构,从而使模态相速度的独特定义不可能。然而,由于分形的内部结构,揭示了一个明确的群速度。我们还展示了非互反QP结构的初步研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信