Optimization of SVD over Graphic Processor

N. Akhtar, S. N. Khan
{"title":"Optimization of SVD over Graphic Processor","authors":"N. Akhtar, S. N. Khan","doi":"10.1109/ICISCON.2013.6524198","DOIUrl":null,"url":null,"abstract":"Many of the engineering applications employ linear algebra to furnish the analysis. Image Processing deals with Eigen values/vectors, Machine Design requires principal component analysis of stress, Statistics and Data compression requires minimization of dimensionality in data. Singular Value Decomposition serves as the answer to all these varied needs. This method alone serves many computational & analytical purposes. Although the computation of SVD of a matrix is bulky, the process involves a sequence of vector operations. This makes it a good candidate for parallelization of over Graphic Processors. This paper proposes parallelization of SVD modules in LAPACK over GPGPU using OpenCL. OpenCL is crucial for making the implementation platform independent. Narayanan[1] too considers parallelization of SVD over CUDA using CUBLAS. This work proposes a scheme which is platform independent, and focuses on routines beyond BLAS.","PeriodicalId":216110,"journal":{"name":"2013 International Conference on Information Systems and Computer Networks","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-03-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 International Conference on Information Systems and Computer Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICISCON.2013.6524198","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Many of the engineering applications employ linear algebra to furnish the analysis. Image Processing deals with Eigen values/vectors, Machine Design requires principal component analysis of stress, Statistics and Data compression requires minimization of dimensionality in data. Singular Value Decomposition serves as the answer to all these varied needs. This method alone serves many computational & analytical purposes. Although the computation of SVD of a matrix is bulky, the process involves a sequence of vector operations. This makes it a good candidate for parallelization of over Graphic Processors. This paper proposes parallelization of SVD modules in LAPACK over GPGPU using OpenCL. OpenCL is crucial for making the implementation platform independent. Narayanan[1] too considers parallelization of SVD over CUDA using CUBLAS. This work proposes a scheme which is platform independent, and focuses on routines beyond BLAS.
图形处理器上SVD的优化
许多工程应用使用线性代数来进行分析。图像处理处理特征值/向量,机器设计需要应力的主成分分析,统计学和数据压缩需要最小化数据的维度。奇异值分解作为所有这些不同需求的答案。这种方法本身就适用于许多计算和分析目的。虽然矩阵奇异值分解的计算量很大,但其过程涉及一系列向量运算。这使得它成为图形处理器并行化的一个很好的候选。本文提出了利用OpenCL在GPGPU上并行化LAPACK中的SVD模块。OpenCL对于使实现平台独立至关重要。Narayanan[1]也考虑使用CUBLAS在CUDA上并行化SVD。本文提出了一种独立于平台的方案,重点关注BLAS之外的例程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信