Graph-based clustering based on cutting sets

Krisztián Búza, P. B. Kis, A. Buza
{"title":"Graph-based clustering based on cutting sets","authors":"Krisztián Búza, P. B. Kis, A. Buza","doi":"10.1109/INES.2011.5954735","DOIUrl":null,"url":null,"abstract":"One of the most prominent challenges in data mining is the clustering of databases containing many categorical attributes. Representation of such data in continuous, Euclidean space usually does not reflect the true segments of data. As a crucial consequence, clustering algorithms working in continuous, Euclidean space may produce segmentations of poor quality. An alternative direction explores graph-based representation of data. In this paper, we show that graph-based data representation is well suitable for the case of categorical attributes. In particular, we offer the following contributions: i) we propose and analyze a flexible graph-based genetic clustering algorithm, where the ideal clusters can be characterized using external cluster quality functions, called kernels, ii) we study kernels, and define the crucial property of effective kernels, iii) we introduce a framework for distributed data-oriented graph clustering computations. In contrast of the complexity of our problem, which turns out to be NP-hard in our analysis, experiments show that in case of well clusterable data, our algorithm has attractive scalability properties. We also perform experiments on real medical data that provides us with further evidence about the practical applicability of our approach.","PeriodicalId":414812,"journal":{"name":"2011 15th IEEE International Conference on Intelligent Engineering Systems","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 15th IEEE International Conference on Intelligent Engineering Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INES.2011.5954735","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

One of the most prominent challenges in data mining is the clustering of databases containing many categorical attributes. Representation of such data in continuous, Euclidean space usually does not reflect the true segments of data. As a crucial consequence, clustering algorithms working in continuous, Euclidean space may produce segmentations of poor quality. An alternative direction explores graph-based representation of data. In this paper, we show that graph-based data representation is well suitable for the case of categorical attributes. In particular, we offer the following contributions: i) we propose and analyze a flexible graph-based genetic clustering algorithm, where the ideal clusters can be characterized using external cluster quality functions, called kernels, ii) we study kernels, and define the crucial property of effective kernels, iii) we introduce a framework for distributed data-oriented graph clustering computations. In contrast of the complexity of our problem, which turns out to be NP-hard in our analysis, experiments show that in case of well clusterable data, our algorithm has attractive scalability properties. We also perform experiments on real medical data that provides us with further evidence about the practical applicability of our approach.
基于割集的图聚类
数据挖掘中最突出的挑战之一是包含许多分类属性的数据库的聚类。在连续的欧几里得空间中表示这些数据通常不能反映数据的真实片段。作为一个关键的结果,聚类算法在连续的欧几里得空间中工作可能会产生质量较差的分割。另一个方向是探索基于图的数据表示。在本文中,我们证明了基于图的数据表示非常适合于分类属性的情况。特别是,我们提供了以下贡献:i)我们提出并分析了一种灵活的基于图的遗传聚类算法,其中理想的聚类可以使用外部聚类质量函数(称为核)来表征;ii)我们研究了核,并定义了有效核的关键属性;iii)我们引入了一个面向分布式数据的图聚类计算框架。与我们的问题的复杂性(在我们的分析中被证明是np困难的)相反,实验表明,在可聚类数据良好的情况下,我们的算法具有吸引人的可扩展性。我们还对真实的医疗数据进行了实验,为我们的方法的实际适用性提供了进一步的证据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信