Improving Cryptanalytic Applications with Stochastic Runtimes on GPUs

Lena Oden, J. Keller
{"title":"Improving Cryptanalytic Applications with Stochastic Runtimes on GPUs","authors":"Lena Oden, J. Keller","doi":"10.1109/IPDPSW52791.2021.00077","DOIUrl":null,"url":null,"abstract":"We investigate cryptanalytic applications comprised of many independent tasks that exhibit a stochastic runtime distribution. We compare four algorithms for executing such applications on GPUs. We demonstrate that for different distributions, problem sizes, and platforms the best strategy varies. We support our analytic results by extensive experiments on two different GPUs, from different sides of the performance spectrum: A high performance GPU (Nvidia Volta) and an energy saving system on chip (Jetson Nano).","PeriodicalId":170832,"journal":{"name":"2021 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW)","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IPDPSW52791.2021.00077","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

We investigate cryptanalytic applications comprised of many independent tasks that exhibit a stochastic runtime distribution. We compare four algorithms for executing such applications on GPUs. We demonstrate that for different distributions, problem sizes, and platforms the best strategy varies. We support our analytic results by extensive experiments on two different GPUs, from different sides of the performance spectrum: A high performance GPU (Nvidia Volta) and an energy saving system on chip (Jetson Nano).
改进gpu上随机运行时的密码分析应用
我们研究了由许多独立任务组成的密码分析应用程序,这些任务表现出随机的运行时分布。我们比较了在gpu上执行此类应用程序的四种算法。我们证明,对于不同的发行版、问题大小和平台,最佳策略是不同的。我们在两种不同的GPU上进行了广泛的实验,从不同的性能方面支持我们的分析结果:高性能GPU (Nvidia Volta)和节能芯片系统(Jetson Nano)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信