{"title":"PARTICLE FILTER OPTIMIZATION TOOLS FOR DYNAMICAL SYSTEMS PROBABILISTIC MODELS","authors":"П.В. Полухин","doi":"10.36622/vstu.2021.86.4.001","DOIUrl":null,"url":null,"abstract":"В работе предложены математические инструменты на основе достаточных статистик и декомпозиции выборок в сочетании с алгоритмами распределенных вычислений, позволяющие существенно повысить эффективность процедуры фильтрации.\n Filtering algorithms are used to assess the state of dynamic systems when solving various practical problems, such as voice synthesis and determining the geo-position and monitoring the movement of objects. In the case of complex hierarchical dynamic systems with a large number of time slices, the process of calculating probabilistic characteristics becomes very time-consuming due to the need to generate a large number of samples. The essence of optimization is to reduce the number of samples generated by the filter, increase their consistency and speed up computational operations. The paper offers mathematical tools based on sufficient statistics and sample decomposition in combination with distributed computing algorithms that can significantly improve the efficiency of the filtering procedure.","PeriodicalId":331043,"journal":{"name":"СИСТЕМЫ УПРАВЛЕНИЯ И ИНФОРМАЦИОННЫЕ ТЕХНОЛОГИИ","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"СИСТЕМЫ УПРАВЛЕНИЯ И ИНФОРМАЦИОННЫЕ ТЕХНОЛОГИИ","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.36622/vstu.2021.86.4.001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
В работе предложены математические инструменты на основе достаточных статистик и декомпозиции выборок в сочетании с алгоритмами распределенных вычислений, позволяющие существенно повысить эффективность процедуры фильтрации.
Filtering algorithms are used to assess the state of dynamic systems when solving various practical problems, such as voice synthesis and determining the geo-position and monitoring the movement of objects. In the case of complex hierarchical dynamic systems with a large number of time slices, the process of calculating probabilistic characteristics becomes very time-consuming due to the need to generate a large number of samples. The essence of optimization is to reduce the number of samples generated by the filter, increase their consistency and speed up computational operations. The paper offers mathematical tools based on sufficient statistics and sample decomposition in combination with distributed computing algorithms that can significantly improve the efficiency of the filtering procedure.
Вработе предложены математические инструменты на основе достаточных статистик и декомпозиции выборок в сочетании с алгоритмами распределенных вычислений、在解决语音合成、确定地理位置和监测物体运动等各种实际问题时,过滤算法被用来评估动态系统的状态。对于具有大量时间片的复杂分层动态系统,由于需要生成大量样本,计算概率特征的过程变得非常耗时。优化的本质是减少滤波器生成的样本数量,提高样本的一致性,加快计算速度。本文提供了基于充分统计和样本分解的数学工具,结合分布式计算算法,可显著提高过滤程序的效率。