A Machine Learning approach to the classification of chemo-structural determinants in label-free SERS detection of proteins

A. Barucci, C. D'Andrea, Edoardo Farnesi, M. Banchelli, Chiara Amicucci, M. Angelis, C. Marzi, R. Pini, B. Hwang, P. Matteini
{"title":"A Machine Learning approach to the classification of chemo-structural determinants in label-free SERS detection of proteins","authors":"A. Barucci, C. D'Andrea, Edoardo Farnesi, M. Banchelli, Chiara Amicucci, M. Angelis, C. Marzi, R. Pini, B. Hwang, P. Matteini","doi":"10.1109/ICOP56156.2022.9911735","DOIUrl":null,"url":null,"abstract":"Establishing standardized methods for a consistent analysis of spectral data remains a largely underexplored aspect in surface-enhanced Raman spectroscopy (SERS), particularly applied to biological and bio-medical research. Here we propose a Machine Learning (ML) based approach for classification of protein species. Principal Component Analysis (PCA), t-distributed stochastic neighbour embedding (t-SNE) and Uniform Manifold Approximation and Projection (UMAP) where used for dimensionality reduction, along with supervised and unsupervised methods to quantify how closely resembled SERS spectral profiles belonging to different species (Albumin from bovine serum, Albumin from human serum, Lysozyme, Human holo-transferrin, Human apo-transferrin) are. In particular, ML algorithms such as Support Vector Machine, K-Nearest Neighbours, Linear Discriminant Analysis and the unsupervised K-means were applied to original and multipeak fitting on SERS spectra respectively. This strategy simultaneously assures a fast, full and successful discrimination of proteins and a thorough characterization of the chemo-structural differences among them, ultimately opening up new routes for SERS evolution toward sensing applications and diagnostics of interest in life sciences.","PeriodicalId":227957,"journal":{"name":"2022 Italian Conference on Optics and Photonics (ICOP)","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 Italian Conference on Optics and Photonics (ICOP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICOP56156.2022.9911735","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Establishing standardized methods for a consistent analysis of spectral data remains a largely underexplored aspect in surface-enhanced Raman spectroscopy (SERS), particularly applied to biological and bio-medical research. Here we propose a Machine Learning (ML) based approach for classification of protein species. Principal Component Analysis (PCA), t-distributed stochastic neighbour embedding (t-SNE) and Uniform Manifold Approximation and Projection (UMAP) where used for dimensionality reduction, along with supervised and unsupervised methods to quantify how closely resembled SERS spectral profiles belonging to different species (Albumin from bovine serum, Albumin from human serum, Lysozyme, Human holo-transferrin, Human apo-transferrin) are. In particular, ML algorithms such as Support Vector Machine, K-Nearest Neighbours, Linear Discriminant Analysis and the unsupervised K-means were applied to original and multipeak fitting on SERS spectra respectively. This strategy simultaneously assures a fast, full and successful discrimination of proteins and a thorough characterization of the chemo-structural differences among them, ultimately opening up new routes for SERS evolution toward sensing applications and diagnostics of interest in life sciences.
机器学习方法在无标记的蛋白质SERS检测中分类化学结构决定因素
在表面增强拉曼光谱(SERS)中,建立光谱数据一致分析的标准化方法仍然是一个很大程度上未被探索的方面,特别是应用于生物和生物医学研究。在这里,我们提出了一种基于机器学习(ML)的蛋白质物种分类方法。主成分分析(PCA)、t分布随机邻居嵌入(t-SNE)和均匀流形逼近和投影(UMAP)用于降维,以及监督和非监督方法来量化属于不同物种(牛血清白蛋白、人血清白蛋白、溶菌酶、人全转铁蛋白、人载铁蛋白)的SERS谱图的相似程度。其中,支持向量机、k近邻、线性判别分析和无监督k均值等ML算法分别应用于SERS谱的原始拟合和多峰拟合。该策略同时确保了蛋白质的快速、全面和成功的区分,并彻底表征了它们之间的化学结构差异,最终为SERS进化开辟了新的途径,以实现对生命科学感兴趣的传感应用和诊断。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信