σ-threshold Bayes Filter in Unknown Birth Background with Multi-Bernoulli Finite Sets

Xiaolong Hu, Q. Zhang, Baojun Song, Pengfei Wan, Zhiquan Xia
{"title":"σ-threshold Bayes Filter in Unknown Birth Background with Multi-Bernoulli Finite Sets","authors":"Xiaolong Hu, Q. Zhang, Baojun Song, Pengfei Wan, Zhiquan Xia","doi":"10.1109/ICSPCC55723.2022.9984566","DOIUrl":null,"url":null,"abstract":"Multiple object tracking faces a challenge of realistically modelling birth background in the premise of keeping the efficiency of filtering. Existing adaptive birth models only pay attention to modeling the birth density, simply assuming the birth probability (BP) constant, resulting inaccurate birth description and deteriorated tracking performance. Moreover, the adaptive birth models incur much heavier computational burden, which greatly limits the real-time capability. The paper gives an efficient adaptive birth intensity cardinality balanced multi-target multi-Bernoulli (CBMeMBer) filter, capable of truly adapting birth as well as effectively achieving good tracking performance via the adaptive calculation of the BP by pre-processing, and reducing the unnecessary likelihood calculations by a measurement noise (MN)-based threshold.","PeriodicalId":346917,"journal":{"name":"2022 IEEE International Conference on Signal Processing, Communications and Computing (ICSPCC)","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference on Signal Processing, Communications and Computing (ICSPCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSPCC55723.2022.9984566","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Multiple object tracking faces a challenge of realistically modelling birth background in the premise of keeping the efficiency of filtering. Existing adaptive birth models only pay attention to modeling the birth density, simply assuming the birth probability (BP) constant, resulting inaccurate birth description and deteriorated tracking performance. Moreover, the adaptive birth models incur much heavier computational burden, which greatly limits the real-time capability. The paper gives an efficient adaptive birth intensity cardinality balanced multi-target multi-Bernoulli (CBMeMBer) filter, capable of truly adapting birth as well as effectively achieving good tracking performance via the adaptive calculation of the BP by pre-processing, and reducing the unnecessary likelihood calculations by a measurement noise (MN)-based threshold.
多伯努利有限集未知出生背景下的σ-阈值贝叶斯滤波
多目标跟踪在保证滤波效率的前提下,面临着对出生背景进行真实建模的挑战。现有的自适应出生模型只注重对出生密度的建模,简单地假设出生概率(BP)常数,导致出生描述不准确,跟踪性能下降。此外,自适应出生模型的计算量较大,极大地限制了模型的实时性。本文提出了一种有效的自适应出生强度基数平衡多目标多伯努利(CBMeMBer)滤波器,该滤波器通过预处理自适应计算BP,有效地实现了出生的自适应,并通过基于测量噪声(MN)的阈值减少了不必要的似然计算。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信