A competition on generalized software-based face presentation attack detection in mobile scenarios

Zinelabdine Boulkenafet, Jukka Komulainen, Z. Akhtar, A. Benlamoudi, Djamel Samai, Salah Eddine Bekhouche, A. Ouafi, F. Dornaika, A. Taleb-Ahmed, Le Qin, Fei Peng, L. Zhang, Min Long, Shruti Bhilare, Vivek Kanhangad, Artur Costa-Pazo, Esteban Vázquez-Fernández, Daniel Pérez-Cabo, J. J. Moreira-Perez, D. González-Jiménez, A. Mohammadi, Sushil K. Bhattacharjee, S. Marcel, S. Volkova, Y. Tang, N. Abe, L. Li, X. Feng, Z. Xia, X. Jiang, S. Liu, Rui Shao, P. Yuen, W. Almeida, F. Andalo, Rafael Padilha, Gabriel Bertocco, William Dias, Jacques Wainer, R. Torres, A. Rocha, M. A. Angeloni, G. Folego, Alan Godoy, A. Hadid
{"title":"A competition on generalized software-based face presentation attack detection in mobile scenarios","authors":"Zinelabdine Boulkenafet, Jukka Komulainen, Z. Akhtar, A. Benlamoudi, Djamel Samai, Salah Eddine Bekhouche, A. Ouafi, F. Dornaika, A. Taleb-Ahmed, Le Qin, Fei Peng, L. Zhang, Min Long, Shruti Bhilare, Vivek Kanhangad, Artur Costa-Pazo, Esteban Vázquez-Fernández, Daniel Pérez-Cabo, J. J. Moreira-Perez, D. González-Jiménez, A. Mohammadi, Sushil K. Bhattacharjee, S. Marcel, S. Volkova, Y. Tang, N. Abe, L. Li, X. Feng, Z. Xia, X. Jiang, S. Liu, Rui Shao, P. Yuen, W. Almeida, F. Andalo, Rafael Padilha, Gabriel Bertocco, William Dias, Jacques Wainer, R. Torres, A. Rocha, M. A. Angeloni, G. Folego, Alan Godoy, A. Hadid","doi":"10.1109/BTAS.2017.8272758","DOIUrl":null,"url":null,"abstract":"In recent years, software-based face presentation attack detection (PAD) methods have seen a great progress. However, most existing schemes are not able to generalize well in more realistic conditions. The objective of this competition is to evaluate and compare the generalization performances of mobile face PAD techniques under some real-world variations, including unseen input sensors, presentation attack instruments (PAI) and illumination conditions, on a larger scale OULU-NPU dataset using its standard evaluation protocols and metrics. Thirteen teams from academic and industrial institutions across the world participated in this competition. This time typical liveness detection based on physiological signs of life was totally discarded. Instead, every submitted system relies practically on some sort of feature representation extracted from the face and/or background regions using hand-crafted, learned or hybrid descriptors. Interesting results and findings are presented and discussed in this paper.","PeriodicalId":372008,"journal":{"name":"2017 IEEE International Joint Conference on Biometrics (IJCB)","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"125","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Joint Conference on Biometrics (IJCB)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BTAS.2017.8272758","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 125

Abstract

In recent years, software-based face presentation attack detection (PAD) methods have seen a great progress. However, most existing schemes are not able to generalize well in more realistic conditions. The objective of this competition is to evaluate and compare the generalization performances of mobile face PAD techniques under some real-world variations, including unseen input sensors, presentation attack instruments (PAI) and illumination conditions, on a larger scale OULU-NPU dataset using its standard evaluation protocols and metrics. Thirteen teams from academic and industrial institutions across the world participated in this competition. This time typical liveness detection based on physiological signs of life was totally discarded. Instead, every submitted system relies practically on some sort of feature representation extracted from the face and/or background regions using hand-crafted, learned or hybrid descriptors. Interesting results and findings are presented and discussed in this paper.
移动场景下基于广义软件的人脸表示攻击检测竞赛
近年来,基于软件的人脸表示攻击检测(PAD)方法取得了很大进展。然而,大多数现有方案不能很好地推广到更现实的条件下。本次竞赛的目的是在更大规模的OULU-NPU数据集上,使用其标准评估协议和指标,评估和比较移动人脸PAD技术在一些现实世界变化下的泛化性能,包括未见输入传感器、呈现攻击工具(PAI)和照明条件。来自世界各地学术和工业机构的13支队伍参加了本次比赛。这一次,基于生命生理体征的典型活体检测完全被抛弃了。相反,每个提交的系统实际上都依赖于使用手工制作的、学习的或混合的描述符从面部和/或背景区域提取的某种特征表示。本文提出并讨论了有趣的结果和发现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信