Multi-Lingual Text Localization via Language-Specific Convolutional Neural Networks

Jhonatas S. Conceição, A. Pinto, L. G. L. Decker, Jose Luis Flores Campana, Manuel Alberto Cordova Neira, Andrezza A. Dos Santos, H. Pedrini, R. Torres
{"title":"Multi-Lingual Text Localization via Language-Specific Convolutional Neural Networks","authors":"Jhonatas S. Conceição, A. Pinto, L. G. L. Decker, Jose Luis Flores Campana, Manuel Alberto Cordova Neira, Andrezza A. Dos Santos, H. Pedrini, R. Torres","doi":"10.5753/sibgrapi.est.2019.8333","DOIUrl":null,"url":null,"abstract":"Scene text localization and recognition is a topic in computer vision that aims to delimit candidate regions in an input image containing incidental scene text elements. The challenge of this research consists in devising detectors capable of dealing with a wide range of variability, such as font size, font style, color, complex background, text in different languages, among others. This work presents a comparison between two strategies of building classification models, based on a Convolution Neural Network method, to detect textual elements in multiple languages in images: (i) classification model built on a multi-lingual training scenario; and (ii) classification model built on a language-specific training scenario. The experiments designed in this work indicate that language-specific model outperforms the classification model trained over a multi-lingual scenario, with an improvement of 14.79%, 8.94%, and 11.43%, in terms of precision, recall, and F-measure values, respectively.","PeriodicalId":119031,"journal":{"name":"Anais Estendidos da Conference on Graphics, Patterns and Images (SIBGRAPI)","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Anais Estendidos da Conference on Graphics, Patterns and Images (SIBGRAPI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5753/sibgrapi.est.2019.8333","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Scene text localization and recognition is a topic in computer vision that aims to delimit candidate regions in an input image containing incidental scene text elements. The challenge of this research consists in devising detectors capable of dealing with a wide range of variability, such as font size, font style, color, complex background, text in different languages, among others. This work presents a comparison between two strategies of building classification models, based on a Convolution Neural Network method, to detect textual elements in multiple languages in images: (i) classification model built on a multi-lingual training scenario; and (ii) classification model built on a language-specific training scenario. The experiments designed in this work indicate that language-specific model outperforms the classification model trained over a multi-lingual scenario, with an improvement of 14.79%, 8.94%, and 11.43%, in terms of precision, recall, and F-measure values, respectively.
基于特定语言卷积神经网络的多语言文本定位
场景文本定位与识别是计算机视觉领域的一个研究课题,其目的是在包含附带场景文本元素的输入图像中划分候选区域。这项研究的挑战在于设计出能够处理各种变异性的检测器,例如字体大小、字体样式、颜色、复杂背景、不同语言的文本等。本文介绍了基于卷积神经网络方法的两种分类模型构建策略的比较,以检测图像中多语言的文本元素:(i)基于多语言训练场景的分类模型;(ii)基于特定语言训练场景的分类模型。本工作设计的实验表明,特定语言模型优于多语言场景下训练的分类模型,在准确率、召回率和F-measure值方面分别提高了14.79%、8.94%和11.43%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信