{"title":"AN iterative model-constrained graph-cut algorithm for Abdominal Aortic Aneurysm thrombus segmentation","authors":"M. Freiman, S. Esses, Leo Joskowicz, J. Sosna","doi":"10.1109/ISBI.2010.5490085","DOIUrl":null,"url":null,"abstract":"We present an iterative model-constrained graph-cut algorithm for the segmentation of Abdominal Aortic Aneurysm (AAA) thrombus. Given an initial segmentation of the aortic lumen, our method automatically segments the thrombus by iteratively coupling intensity-based graph min-cut segmentation and geometric parametric model fitting. The geometric model effectively constrains the graph min-cut segmentation from “leaking” to nearby veins and organs. Experimental results on 8 AAA CTA datasets yield robust segmentations of the AAA thrombus in 2 mins computer time with a mean absolute volume difference of 8.0% and mean volumetric overlap error of 12.9%, which is comparable to the interobserver error.","PeriodicalId":250523,"journal":{"name":"2010 IEEE International Symposium on Biomedical Imaging: From Nano to Macro","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"40","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE International Symposium on Biomedical Imaging: From Nano to Macro","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISBI.2010.5490085","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 40
Abstract
We present an iterative model-constrained graph-cut algorithm for the segmentation of Abdominal Aortic Aneurysm (AAA) thrombus. Given an initial segmentation of the aortic lumen, our method automatically segments the thrombus by iteratively coupling intensity-based graph min-cut segmentation and geometric parametric model fitting. The geometric model effectively constrains the graph min-cut segmentation from “leaking” to nearby veins and organs. Experimental results on 8 AAA CTA datasets yield robust segmentations of the AAA thrombus in 2 mins computer time with a mean absolute volume difference of 8.0% and mean volumetric overlap error of 12.9%, which is comparable to the interobserver error.