Lyapunov-based nonlinear observer, design for stochastic systems

E. Yaz, A. Azemi
{"title":"Lyapunov-based nonlinear observer, design for stochastic systems","authors":"E. Yaz, A. Azemi","doi":"10.1109/CDC.1990.203583","DOIUrl":null,"url":null,"abstract":"An observer design methodology which is applicable to more general nonlinear stochastic system models is given. The method relies not on the optimization theory but on Lyapunov-type stochastic stability results which can guarantee a mean square exponential rate of convergence for the estimation error. It is proved that discrete- and continuous-time state estimation is possible using the method. An example is given to illustrate the performance of this observer relative to some of the most commonly used filters in this field.<<ETX>>","PeriodicalId":287089,"journal":{"name":"29th IEEE Conference on Decision and Control","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1990-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"29th IEEE Conference on Decision and Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CDC.1990.203583","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

An observer design methodology which is applicable to more general nonlinear stochastic system models is given. The method relies not on the optimization theory but on Lyapunov-type stochastic stability results which can guarantee a mean square exponential rate of convergence for the estimation error. It is proved that discrete- and continuous-time state estimation is possible using the method. An example is given to illustrate the performance of this observer relative to some of the most commonly used filters in this field.<>
基于lyapunov的非线性观测器,随机系统设计
给出了一种适用于更一般的非线性随机系统模型的观测器设计方法。该方法不依赖于优化理论,而是依赖于lyapunov型随机稳定性结果,该结果可以保证估计误差的均方指数收敛率。证明了该方法可以进行离散时间和连续时间的状态估计。给出了一个例子来说明该观测器相对于该领域中一些最常用的滤波器的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信