{"title":"Dark currents in double-heterostructure and quantum-well solar cells","authors":"R. Corkish, C. Honsberg","doi":"10.1109/PVSC.1997.654238","DOIUrl":null,"url":null,"abstract":"Numerical modelling shows that the separation of the quasi-Fermi potentials in the lower bandgap region of a double-heterostructure may be less than the terminal voltage, resulting in smaller dark currents than would be expected if flat quasi-Fermi levels were assumed. Quasi-Fermi level variations occur as a response to carrier transport limitation by drift and diffusion within the space-charge region or by thermionic emission. This is a possible explanation for the low dark currents which have been measured in quantum-well p-i-n solar cells. This effect, together with evidence that photogenerated carriers can escape from quantum wells with high efficiency, suggests that the inclusion of low-bandgap regions in the depletion regions of solar cells may lead to high efficiency devices.","PeriodicalId":251166,"journal":{"name":"Conference Record of the Twenty Sixth IEEE Photovoltaic Specialists Conference - 1997","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1997-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Conference Record of the Twenty Sixth IEEE Photovoltaic Specialists Conference - 1997","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PVSC.1997.654238","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15
Abstract
Numerical modelling shows that the separation of the quasi-Fermi potentials in the lower bandgap region of a double-heterostructure may be less than the terminal voltage, resulting in smaller dark currents than would be expected if flat quasi-Fermi levels were assumed. Quasi-Fermi level variations occur as a response to carrier transport limitation by drift and diffusion within the space-charge region or by thermionic emission. This is a possible explanation for the low dark currents which have been measured in quantum-well p-i-n solar cells. This effect, together with evidence that photogenerated carriers can escape from quantum wells with high efficiency, suggests that the inclusion of low-bandgap regions in the depletion regions of solar cells may lead to high efficiency devices.