Circulant space-time codes for integration with beamforming

Yiyue Wu, A. Calderbank
{"title":"Circulant space-time codes for integration with beamforming","authors":"Yiyue Wu, A. Calderbank","doi":"10.1109/ICASSP.2010.5496288","DOIUrl":null,"url":null,"abstract":"This paper provides a framework for designing space-time codes to take advantage of a small number of feedback bits from the receiver. The new codes are based on circulant matrices and simple conditions are derived that guarantee full rate and full diversity. In the absence of feedback, Symbol Error Rate (SER) performance is shown to be similar to that of Diagonal Algebraic Space-Time (DAST) codes, both for Maximum Likelihood (ML) decoding and for suboptimal linear decoding. Decoding complexity of circulant codes is similar to the DAST codes and encoding is slightly less complex. In the presence of a small number of feedback bits from the receiver the circulant construction is shown to permit integration of space-time coding with a fixed set of beams by simply advancing the phase on one of the antennas. This integration is not possible within the DAST framework. Integration of space-time codes with beamforming makes it possible to achieve ML decoding performance with only linear decoding complexity or to improve upon ML performance of the original code.","PeriodicalId":293333,"journal":{"name":"2010 IEEE International Conference on Acoustics, Speech and Signal Processing","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE International Conference on Acoustics, Speech and Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP.2010.5496288","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

This paper provides a framework for designing space-time codes to take advantage of a small number of feedback bits from the receiver. The new codes are based on circulant matrices and simple conditions are derived that guarantee full rate and full diversity. In the absence of feedback, Symbol Error Rate (SER) performance is shown to be similar to that of Diagonal Algebraic Space-Time (DAST) codes, both for Maximum Likelihood (ML) decoding and for suboptimal linear decoding. Decoding complexity of circulant codes is similar to the DAST codes and encoding is slightly less complex. In the presence of a small number of feedback bits from the receiver the circulant construction is shown to permit integration of space-time coding with a fixed set of beams by simply advancing the phase on one of the antennas. This integration is not possible within the DAST framework. Integration of space-time codes with beamforming makes it possible to achieve ML decoding performance with only linear decoding complexity or to improve upon ML performance of the original code.
与波束形成集成的循环空时码
本文提供了一个设计空时码的框架,以充分利用接收机的少量反馈比特。新码基于循环矩阵,并推导出保证全速率和全分集的简单条件。在没有反馈的情况下,符号错误率(SER)的性能与对角代数时空(DAST)码的性能相似,无论是对于最大似然(ML)解码还是次优线性解码。循环码的译码复杂度与DAST码相似,编码复杂度略低。在接收端有少量反馈比特的情况下,循环结构可以通过简单地提高其中一个天线的相位来实现空时编码与一组固定波束的集成。这种集成在DAST框架中是不可能的。将空时码与波束形成相结合,可以实现线性译码复杂度下的机器学习译码性能,也可以提高原始码的机器学习性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信