{"title":"Tree automata, mu-calculus and determinacy","authors":"E. Emerson, C. Jutla","doi":"10.1109/SFCS.1991.185392","DOIUrl":null,"url":null,"abstract":"It is shown that the propositional mu-calculus is equivalent in expressive power to finite automata on infinite trees. Since complementation is trivial in the mu-calculus, the equivalence provides a radically simplified, alternative proof of M.O. Rabin's (1989) complementation lemma for tree automata, which is the heart of one of the deepest decidability results. It is also shown how mu-calculus can be used to establish determinacy of infinite games used in earlier proofs of complementation lemma, and certain games used in the theory of online algorithms.<<ETX>>","PeriodicalId":320781,"journal":{"name":"[1991] Proceedings 32nd Annual Symposium of Foundations of Computer Science","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1991-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"818","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"[1991] Proceedings 32nd Annual Symposium of Foundations of Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SFCS.1991.185392","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 818
Abstract
It is shown that the propositional mu-calculus is equivalent in expressive power to finite automata on infinite trees. Since complementation is trivial in the mu-calculus, the equivalence provides a radically simplified, alternative proof of M.O. Rabin's (1989) complementation lemma for tree automata, which is the heart of one of the deepest decidability results. It is also shown how mu-calculus can be used to establish determinacy of infinite games used in earlier proofs of complementation lemma, and certain games used in the theory of online algorithms.<>