Tree automata, mu-calculus and determinacy

E. Emerson, C. Jutla
{"title":"Tree automata, mu-calculus and determinacy","authors":"E. Emerson, C. Jutla","doi":"10.1109/SFCS.1991.185392","DOIUrl":null,"url":null,"abstract":"It is shown that the propositional mu-calculus is equivalent in expressive power to finite automata on infinite trees. Since complementation is trivial in the mu-calculus, the equivalence provides a radically simplified, alternative proof of M.O. Rabin's (1989) complementation lemma for tree automata, which is the heart of one of the deepest decidability results. It is also shown how mu-calculus can be used to establish determinacy of infinite games used in earlier proofs of complementation lemma, and certain games used in the theory of online algorithms.<<ETX>>","PeriodicalId":320781,"journal":{"name":"[1991] Proceedings 32nd Annual Symposium of Foundations of Computer Science","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1991-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"818","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"[1991] Proceedings 32nd Annual Symposium of Foundations of Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SFCS.1991.185392","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 818

Abstract

It is shown that the propositional mu-calculus is equivalent in expressive power to finite automata on infinite trees. Since complementation is trivial in the mu-calculus, the equivalence provides a radically simplified, alternative proof of M.O. Rabin's (1989) complementation lemma for tree automata, which is the heart of one of the deepest decidability results. It is also shown how mu-calculus can be used to establish determinacy of infinite games used in earlier proofs of complementation lemma, and certain games used in the theory of online algorithms.<>
树自动机,微积分和确定性
证明了命题微积分在表达能力上等同于无限树上的有限自动机。由于互补在mu微积分中是微不足道的,因此等价提供了M.O. Rabin(1989)树形自动机的互补引理的一个彻底简化的替代证明,这是最深刻的可决性结果之一的核心。它还显示了如何使用微积分来建立在互补引理的早期证明中使用的无限对策的确定性,以及在线算法理论中使用的某些对策。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信