Multivariate generalized Gaussian function mixture for volume modeling of parathyroid glands

M. Listewnik, H. Piwowarska-Bilska, K. Safranow, Jacek Iwanowski, M. Laszczyńska, M. Chosia, M. Ostrowski, B. Birkenfeld, P. Mazurek
{"title":"Multivariate generalized Gaussian function mixture for volume modeling of parathyroid glands","authors":"M. Listewnik, H. Piwowarska-Bilska, K. Safranow, Jacek Iwanowski, M. Laszczyńska, M. Chosia, M. Ostrowski, B. Birkenfeld, P. Mazurek","doi":"10.1109/MMAR.2017.8046974","DOIUrl":null,"url":null,"abstract":"The main contribution of this paper is the proposal of volume modeling of parathyroid gland. Multivariate generalized Gaussian distribution (Multivariate GGD) mixture is assumed. Random walk optimization algorithm is applied for the estimation of parameters. There are 800 synthetic test cases applied for the evaluation of algorithm properties. Example result for real SPECT data are also shown. The essential is the computation time, so GPGPU implementation is proposed for reduction of processing time. Obtained parameters of mixture are required for further analysis of relation to patient data.","PeriodicalId":189753,"journal":{"name":"2017 22nd International Conference on Methods and Models in Automation and Robotics (MMAR)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 22nd International Conference on Methods and Models in Automation and Robotics (MMAR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MMAR.2017.8046974","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The main contribution of this paper is the proposal of volume modeling of parathyroid gland. Multivariate generalized Gaussian distribution (Multivariate GGD) mixture is assumed. Random walk optimization algorithm is applied for the estimation of parameters. There are 800 synthetic test cases applied for the evaluation of algorithm properties. Example result for real SPECT data are also shown. The essential is the computation time, so GPGPU implementation is proposed for reduction of processing time. Obtained parameters of mixture are required for further analysis of relation to patient data.
基于多元广义高斯函数的甲状旁腺体积建模
本文的主要贡献是提出了甲状旁腺的体积建模方法。假设多元广义高斯分布(多元GGD)混合分布。采用随机游走优化算法进行参数估计。有800个综合测试用例用于评估算法的性能。给出了实际SPECT数据的算例结果。其本质是计算时间,因此提出了GPGPU实现,以减少处理时间。获得的混合物参数需要进一步分析与患者数据的关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信