Characterization of the operating periods of a power transformer by clustering the dissolved gas data

S. Eke, T. Aka-Ngnui, G. Clerc, I. Fofana
{"title":"Characterization of the operating periods of a power transformer by clustering the dissolved gas data","authors":"S. Eke, T. Aka-Ngnui, G. Clerc, I. Fofana","doi":"10.1109/DEMPED.2017.8062371","DOIUrl":null,"url":null,"abstract":"This paper presents an analysis of the different operating periods of an in-service oil immersed power transformer through dissolved gas concentrations. The unsupervised classification by k-means method allows regrouping the periods of operation into classes using the Euclidean distance as a criterion of similarity. The analyzed data describes the evolution of gas concentrations as a function of time. The classes obtained are characterized by the production activities of the different gases, various operating constraints and the incipient failures. These periods also highlight the maintenance actions carried out on the insulating oil.","PeriodicalId":325413,"journal":{"name":"2017 IEEE 11th International Symposium on Diagnostics for Electrical Machines, Power Electronics and Drives (SDEMPED)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE 11th International Symposium on Diagnostics for Electrical Machines, Power Electronics and Drives (SDEMPED)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DEMPED.2017.8062371","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

This paper presents an analysis of the different operating periods of an in-service oil immersed power transformer through dissolved gas concentrations. The unsupervised classification by k-means method allows regrouping the periods of operation into classes using the Euclidean distance as a criterion of similarity. The analyzed data describes the evolution of gas concentrations as a function of time. The classes obtained are characterized by the production activities of the different gases, various operating constraints and the incipient failures. These periods also highlight the maintenance actions carried out on the insulating oil.
用溶解气体数据聚类来描述电力变压器的运行周期
通过分析在役油浸式电力变压器不同运行时段的溶解气体浓度。通过k-means方法的无监督分类允许使用欧几里得距离作为相似性标准将操作周期重新分组为类。分析的数据描述了气体浓度随时间的变化。所得到的等级以不同气体的生产活动、各种操作约束和初期故障为特征。这些时期也强调了对绝缘油进行的维护行动。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信