Learning an intersection of k halfspaces over a uniform distribution

Avrim Blum, R. Kannan
{"title":"Learning an intersection of k halfspaces over a uniform distribution","authors":"Avrim Blum, R. Kannan","doi":"10.1109/SFCS.1993.366856","DOIUrl":null,"url":null,"abstract":"We present a polynomial-time algorithm to learn an intersection of a constant number of halfspaces in n dimensions, over the uniform distribution on an n-dimensional ball. The algorithm we present in fact can learn an intersection of an arbitrary (polynomial) number of halfspaces over this distribution, if the subspace spanned by the normal vectors to the bounding hyperplanes has constant dimension. This generalizes previous results for this distribution, in particular a result of E.B. Baum (1990) who showed how to learn an intersection of 2 halfspaces defined by hyperplanes that pass through the origin (his results in fact held for a variety of symmetric distributions). Our algorithm uses estimates of second moments to find vectors in a low-dimensional \"relevant subspace\". We believe that the algorithmic techniques studied here may be useful in other geometric learning applications.<<ETX>>","PeriodicalId":253303,"journal":{"name":"Proceedings of 1993 IEEE 34th Annual Foundations of Computer Science","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1993-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"36","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of 1993 IEEE 34th Annual Foundations of Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SFCS.1993.366856","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 36

Abstract

We present a polynomial-time algorithm to learn an intersection of a constant number of halfspaces in n dimensions, over the uniform distribution on an n-dimensional ball. The algorithm we present in fact can learn an intersection of an arbitrary (polynomial) number of halfspaces over this distribution, if the subspace spanned by the normal vectors to the bounding hyperplanes has constant dimension. This generalizes previous results for this distribution, in particular a result of E.B. Baum (1990) who showed how to learn an intersection of 2 halfspaces defined by hyperplanes that pass through the origin (his results in fact held for a variety of symmetric distributions). Our algorithm uses estimates of second moments to find vectors in a low-dimensional "relevant subspace". We believe that the algorithmic techniques studied here may be useful in other geometric learning applications.<>
学习k个半空间在均匀分布上的交集
我们提出了一种多项式时间算法来学习n维均匀分布的n维球上的常数半空间的交集。我们提出的算法实际上可以学习任意(多项式)个数的半空间在这个分布上的交集,如果由法向量到边界超平面张成的子空间具有恒定的维数。这概括了之前关于这种分布的结果,特别是E.B. Baum(1990)的结果,他展示了如何学习由穿过原点的超平面定义的两个半空间的交集(他的结果实际上适用于各种对称分布)。我们的算法使用第二矩的估计在低维的“相关子空间”中找到向量。我们相信这里研究的算法技术可能在其他几何学习应用中有用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信