Significant Wave Height Prediction Based on MSFD Neural Network

Huan Wang, Dongyang Fu, Shan Liao, Guancheng Wang, Xiuchun Xiao
{"title":"Significant Wave Height Prediction Based on MSFD Neural Network","authors":"Huan Wang, Dongyang Fu, Shan Liao, Guancheng Wang, Xiuchun Xiao","doi":"10.1109/ICICIP47338.2019.9012194","DOIUrl":null,"url":null,"abstract":"Due to the complicated behavior of the ocean wave, significant wave height (SWH) prediction is a difficult field in physical oceanography. In this paper, a novel neural network model, based on multiple sine functions decomposition (MSFD), is exploited to achieve the prediction of SWH. Different from traditional models built on physical processes of wave generation and dissipation, the method presented in this paper predicts and analyzes SWH from a mathematical statistical perspective. In particular, the variation rules of the SWH are learned by decomposing the mapping from time to SWH into a plurality of sine functions, and then the new data are predicted by linear combination of these sine functions. Correlation analysis and error between the forecast data and the actual data indicate that the MSFD neural network performs well in predicting SWH data.","PeriodicalId":431872,"journal":{"name":"2019 Tenth International Conference on Intelligent Control and Information Processing (ICICIP)","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 Tenth International Conference on Intelligent Control and Information Processing (ICICIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICICIP47338.2019.9012194","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Due to the complicated behavior of the ocean wave, significant wave height (SWH) prediction is a difficult field in physical oceanography. In this paper, a novel neural network model, based on multiple sine functions decomposition (MSFD), is exploited to achieve the prediction of SWH. Different from traditional models built on physical processes of wave generation and dissipation, the method presented in this paper predicts and analyzes SWH from a mathematical statistical perspective. In particular, the variation rules of the SWH are learned by decomposing the mapping from time to SWH into a plurality of sine functions, and then the new data are predicted by linear combination of these sine functions. Correlation analysis and error between the forecast data and the actual data indicate that the MSFD neural network performs well in predicting SWH data.
基于MSFD神经网络的有效波高预测
由于海浪的复杂特性,有效波高的预测是物理海洋学中的一个难点。本文提出了一种基于多重正弦函数分解(MSFD)的神经网络模型来实现对SWH的预测。与传统的基于波浪产生和耗散物理过程的模型不同,本文提出的方法是从数理统计的角度对SWH进行预测和分析。特别地,通过将时间到SWH的映射分解为多个正弦函数来学习SWH的变化规律,然后通过这些正弦函数的线性组合来预测新数据。预测数据与实际数据的相关性分析和误差分析表明,MSFD神经网络对SWH数据的预测效果良好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信