FASTAGEDS: Fast Approximate Graph Entity Dependency Discovery

WISE Pub Date : 2023-04-05 DOI:10.48550/arXiv.2304.02323
Guangtong Zhou, Selasi Kwashie, Yidi Zhang, Michael Bewong, V. M. Nofong, Debo Cheng, K. He, Zaiwen Feng
{"title":"FASTAGEDS: Fast Approximate Graph Entity Dependency Discovery","authors":"Guangtong Zhou, Selasi Kwashie, Yidi Zhang, Michael Bewong, V. M. Nofong, Debo Cheng, K. He, Zaiwen Feng","doi":"10.48550/arXiv.2304.02323","DOIUrl":null,"url":null,"abstract":"This paper studies the discovery of approximate rules in property graphs. We propose a semantically meaningful measure of error for mining graph entity dependencies (GEDs) at almost hold, to tolerate errors and inconsistencies that exist in real-world graphs. We present a new characterisation of GED satisfaction, and devise a depth-first search strategy to traverse the search space of candidate rules efficiently. Further, we perform experiments to demonstrate the feasibility and scalability of our solution, FASTAGEDS, with three real-world graphs.","PeriodicalId":424892,"journal":{"name":"WISE","volume":"48 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"WISE","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2304.02323","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This paper studies the discovery of approximate rules in property graphs. We propose a semantically meaningful measure of error for mining graph entity dependencies (GEDs) at almost hold, to tolerate errors and inconsistencies that exist in real-world graphs. We present a new characterisation of GED satisfaction, and devise a depth-first search strategy to traverse the search space of candidate rules efficiently. Further, we perform experiments to demonstrate the feasibility and scalability of our solution, FASTAGEDS, with three real-world graphs.
快速近似图实体依赖关系发现
研究性质图中近似规则的发现问题。我们提出了一种语义上有意义的误差度量方法,用于在几乎保持的情况下挖掘图实体依赖关系(GEDs),以容忍现实世界图中存在的错误和不一致。我们提出了一种新的GED满意度表征,并设计了一种深度优先的搜索策略来有效地遍历候选规则的搜索空间。此外,我们用三个真实世界的图形执行实验来证明我们的解决方案FASTAGEDS的可行性和可扩展性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信